Learning to Anticipate

Alex Schwing

University of Illinois at Urbana Champaign

September 23, 2019

Magicians

CISCO

AI – The Next Decade

Computer Vision and Machine Learning Success

Models which analyze work very well

- Image classification
- Object detection
- Semantic segmentation
- Human pose estimation

Our quest to personalize life

Models which anticipate

Observation

(1) Revealing Priors

(2) Seeing the Unseen

(3) Anticipating the Future

Combine the vision of David Marr:

"2D to 3D reasoning"

and Rodolfo Llinas, Kenneth Craik:

"a creature must anticipate outcome of movement to navigate safely"

Major Ingredients to Anticipate

- Interaction reasoning
- <u>Revealing priors</u>
- Holistic object understanding
- <u>Capturing ambiguity</u>

Major Ingredients to Anticipate

- Interaction reasoning
- Revealing priors
- Holistic object understanding
- Modeling ambiguity

Instance Level Video Object Segmentation

Weakly Supervised Setting

- Given objects outlined in first frame
- Predict object contours in subsequent frames

Classical Deep-Net Approaches:

- Train a classifier using first frame data
- Run on remaining frames

Concern: training at runtime is slow

VideoMatch: Matching based Video Object Segmentation

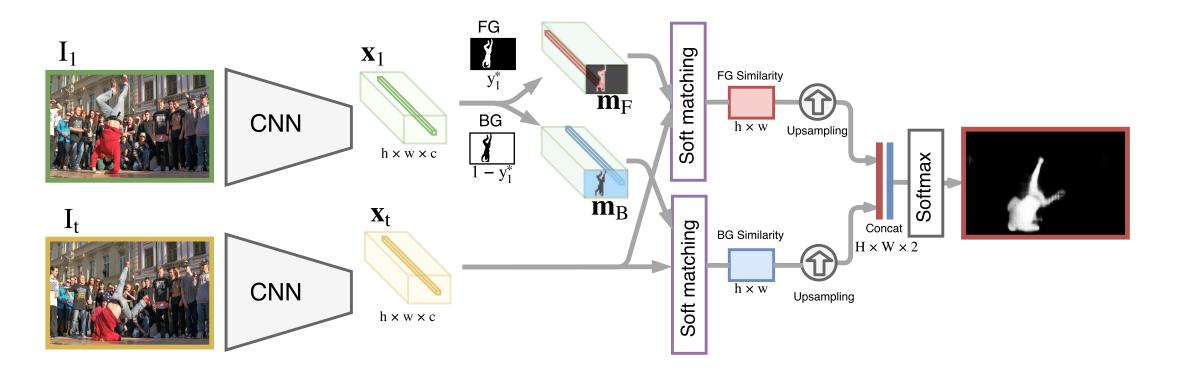
Goals:

- Efficient algorithm that does not require fine-tuning
- Combination of detection and tracking
- Implicit extraction of temporal information

See also: Voigtlaender et al. 2019, Vondrick et al. 2018

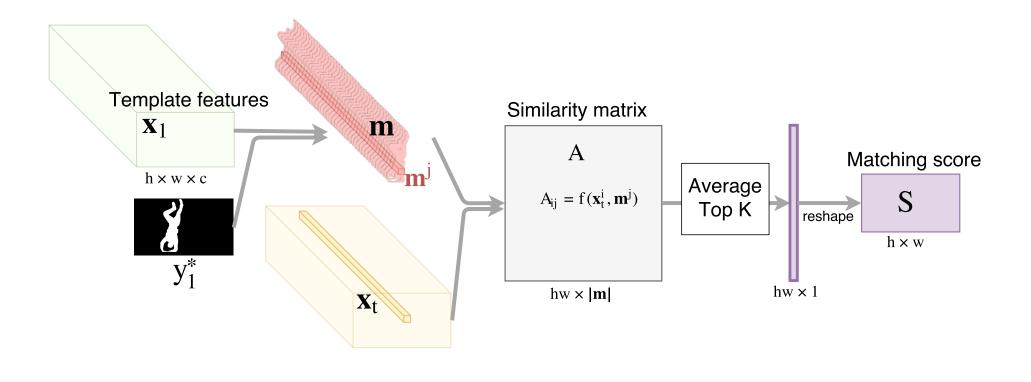
VideoMatch Approach

Idea: Learning to match feature representations



VideoMatch Softmatching

Idea: Learning to match feature representations



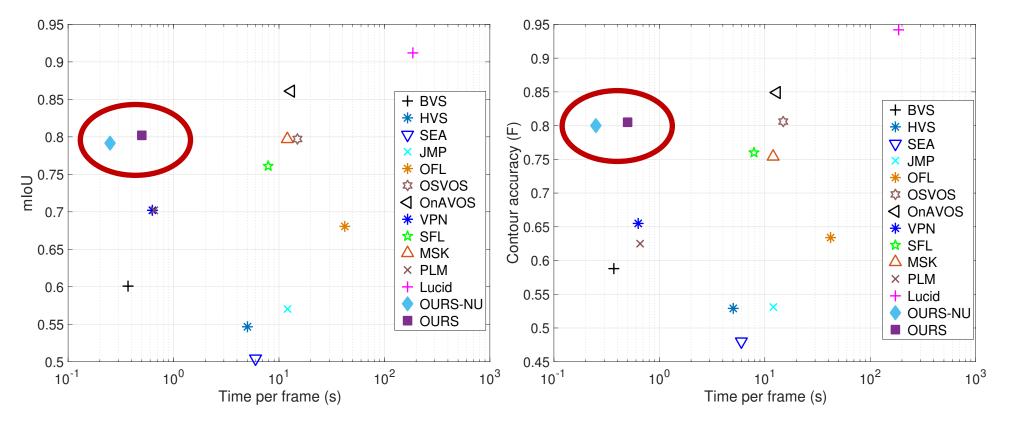
VideoMatch Extensions

- Online Update: augment foreground and background sets
- Outlier Removal

(a) FG pred. $y_{t,\text{init}}$ (b) FG pred. y_{t-1} (c) Extruded pred. \hat{y}_{t-1} (d) Output pred. y_t

VideoMatch Results

Results (DAVIS-16 Validation)



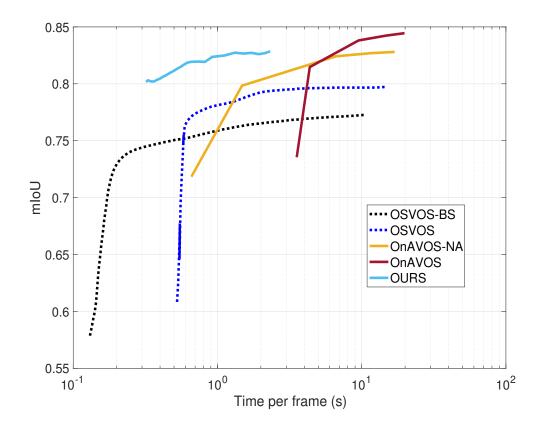
VideoMatch Results

Results (DAVIS-16 Validation)

Outlier removal	BG update	FG update	mIoU
-	-	-	0.792
\checkmark	-	-	0.796
\checkmark	\checkmark	-	0.799
\checkmark	\checkmark	\checkmark	0.802

VideoMatch Results

Results (DAVIS-16 Validation)

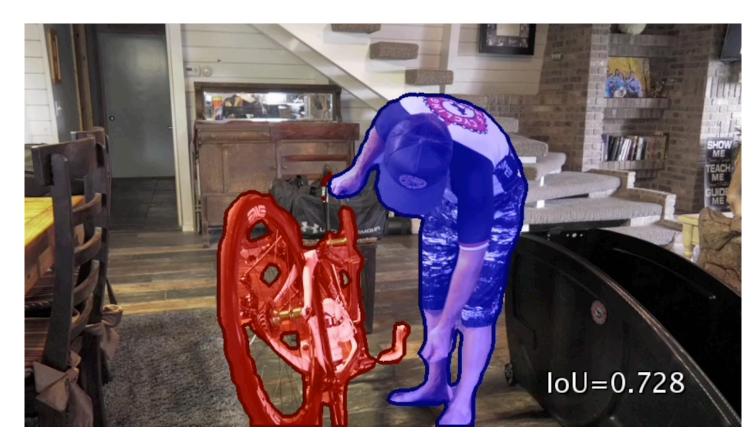


VideoMatch Results

Qualitative Results (Davis 2016)

VideoMatch Results

Qualitative Results (Davis 2017)

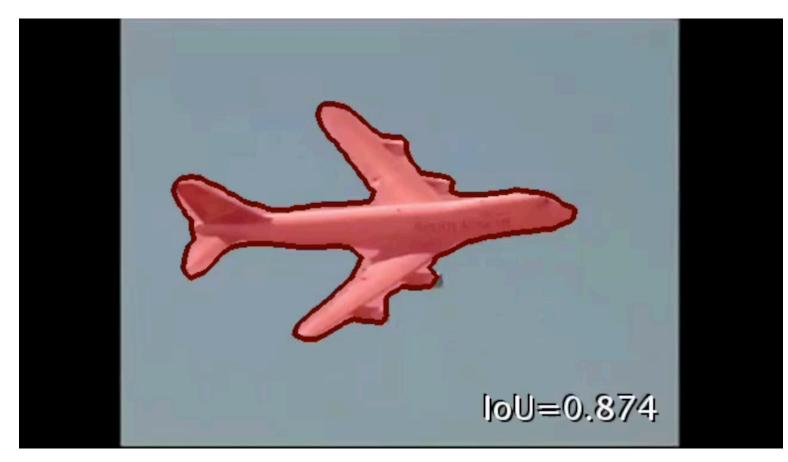


VideoMatch Results

Qualitative Results (Jumpcut - Trained on Davis 17)

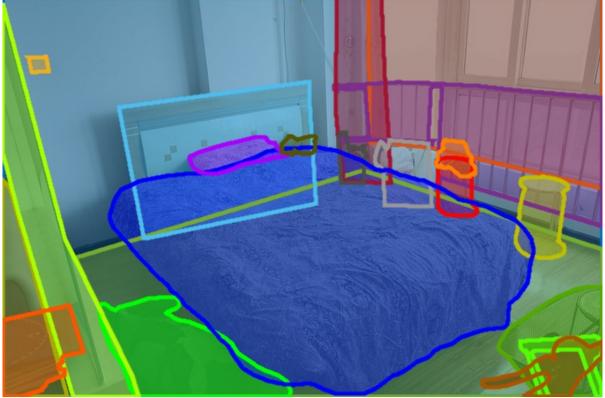
VideoMatch Results

Qualitative Results (YouTube-Objects – Trained on Davis 2017)



Amodal Segmentation

• Recognizing the full extent of the object



Amodal Segmentation

• Recognizing the full extent of the object

Difficulties

- Humans are capable of amodal segmentation
- A challenging task for AI systems
 - Occlusion reasoning
 - Predicting the invisible part
 - Expensive to get the groundtruth

Current Amodal Segmentation Datasets

• COCOA

• D2S

• DYCE

Real data A subset of MS-COCO dataset Real data

Groceries on the table

Synthetic data Indoor static scene

Current Amodal Segmentation Datasets

• COCOA

• D2S

• DYCE

Real data

Real data

A subset of MS-COCO dataset

Groceries on the table

Synthetic data Indoor static scene

All of them are image datasets

Temporal Information is Missing!

• Temporal context helps to predict amodal segmentation

- A synthetic dataset using Grand Theft Auto V (GTA-V)
 - Realistic rendering
 - Various scenarios
 - Different weather/lighting condition
 - Groundtruth annotations from the game

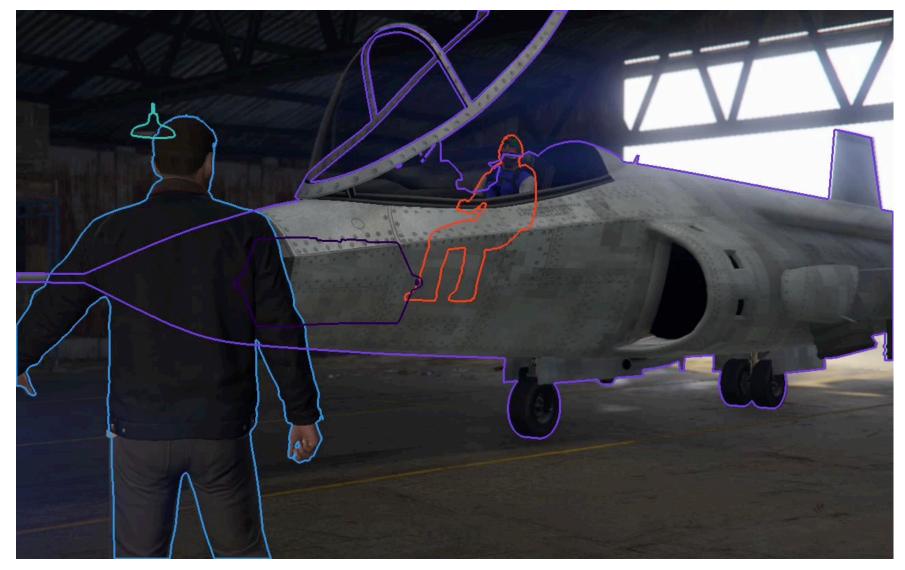
- A synthetic dataset using Grand Theft Auto V (GTA-V)
 - Realistic rendering
 - Various scenarios
 - Different weather/lighting condition
 - Groundtruth annotations from the game

- A synthetic dataset using Grand Theft Auto V (GTA-V)
 - Realistic rendering
 - Various scenarios
 - Different weather/lighting conditions
 - Groundtruth annotations from the game

- A synthetic dataset using Grand Theft Auto V (GTA-V)
 - Realistic rendering
 - Various scenarios
 - Different weather/lighting condition
 - Groundtruth annotations from the game

Example Video

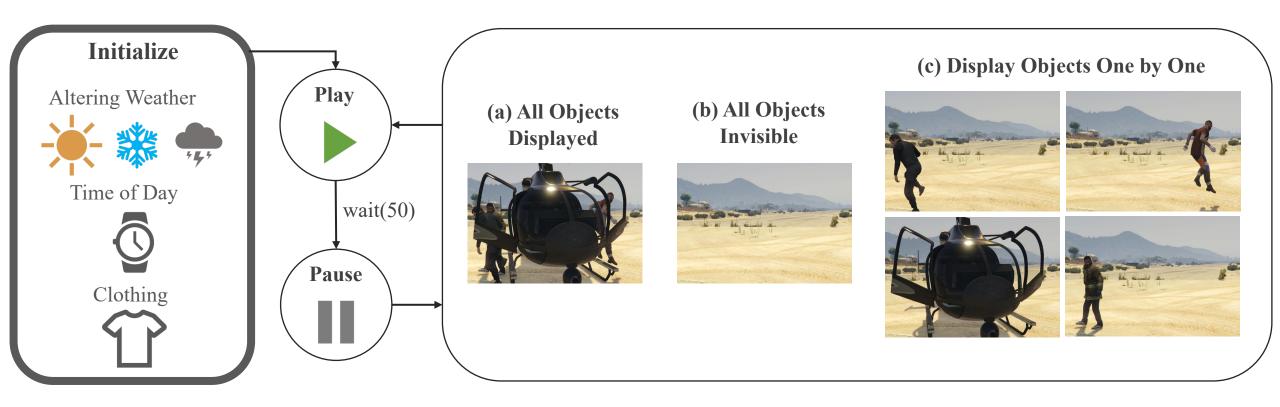
Example Video



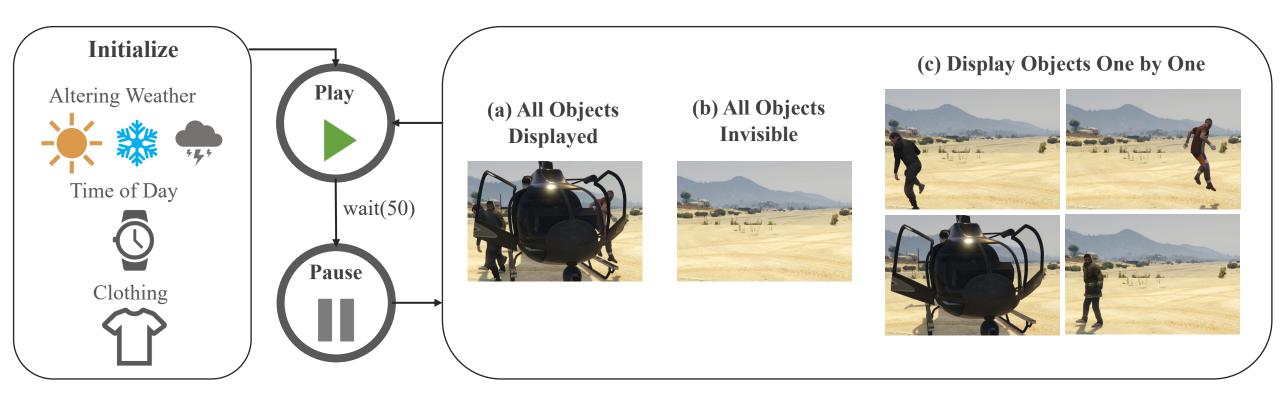
Controlling the Game

- We use ScriptHook V to control the game
 - Altering the weather, time of day and clothing
 - Pausing the game
 - Toggling the visibility of objects

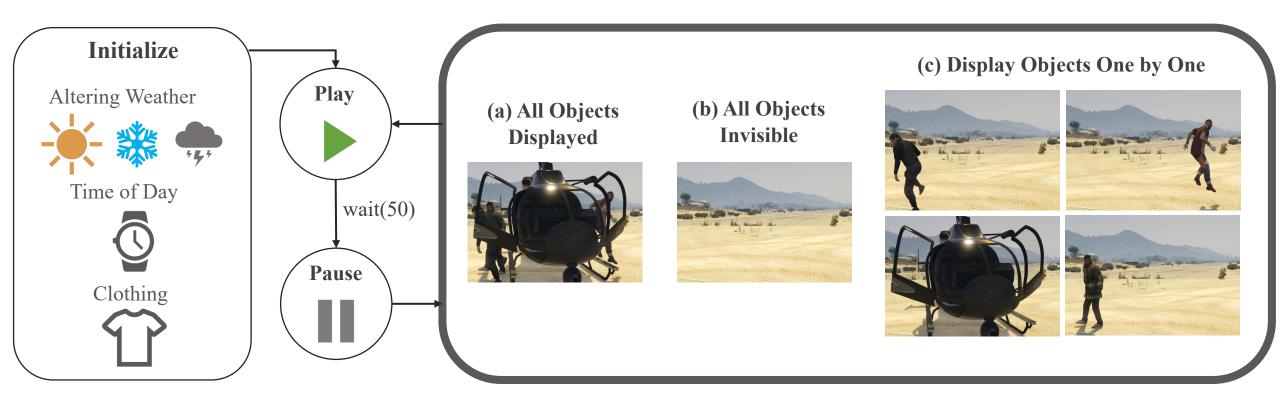
Dataset Collection Pipeline



Dataset Collection Pipeline



Dataset Collection Pipeline



How to Compute the Amodal Segmentation

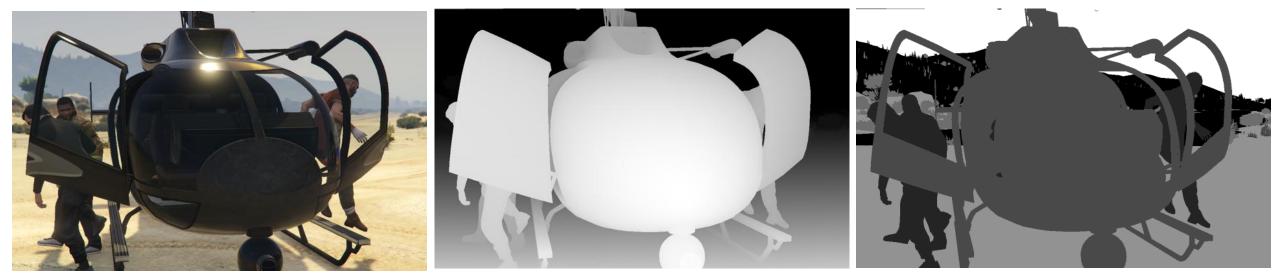
 Comparing the RGB pixels wouldn't be robust enough due to rendering

Display Objects One by One

All Objects Displayed

Depth Buffer and Stencil Buffer

- Along with the RGB images, we also record the corresponding depth buffer and stencil buffer by hooking into DirectX functions.
- All objects displayed



RGB image

Depth buffer

Depth Buffer and Stencil Buffer

- Along with the RGB images, we also record the corresponding depth buffer and stencil buffer by hooking into DirectX functions.
- Background

RGB image

Depth buffer

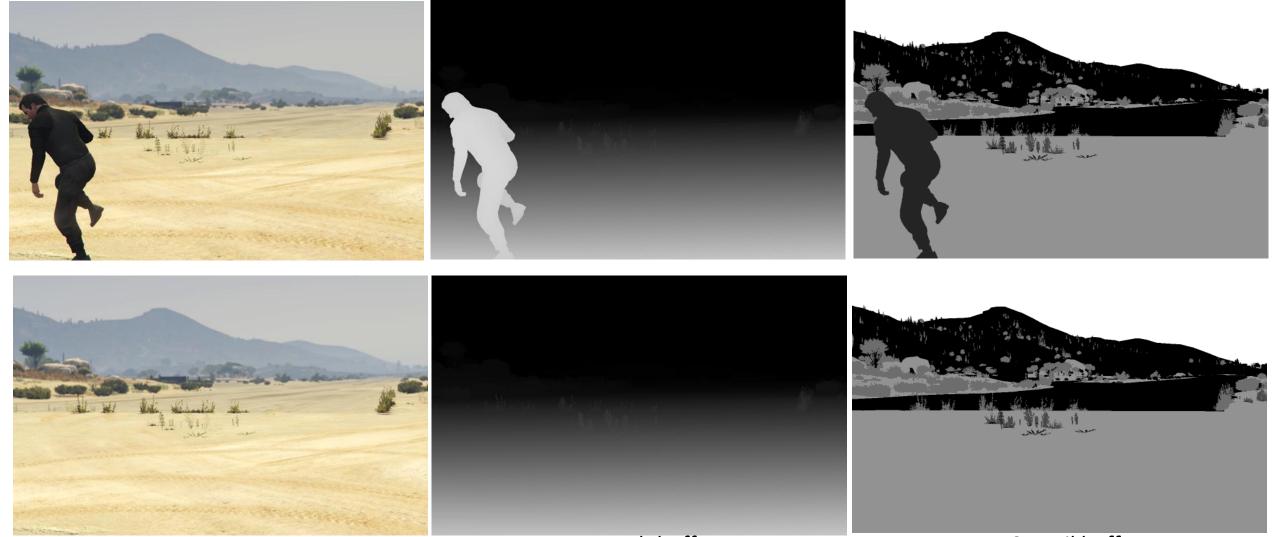
Depth Buffer and Stencil Buffer

- Along with the RGB images, we also record the corresponding depth buffer and stencil buffer by hooking into DirectX functions.
- One object displayed

RGB image

Depth buffer

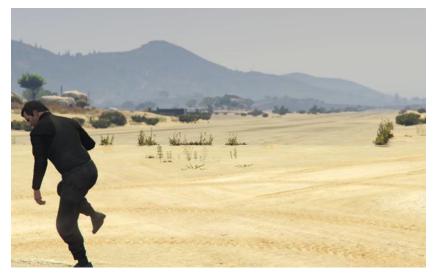
Computing the Amodal Segmentation



RGB image

Depth buffer

Computing the Amodal Segmentation



RGB image



Amodal segmentation

Amodal Segmentation

Visible Mask

Tracking Objects

- The game assigns a unique ID to each object
- We can track the objects based on the IDs

Semantic Class Labels

- We are able to obtain the name of the 3D model of each object
- We merge the objects with similar names into **162** classes
- 60% of the classes in MS-COCO can be found in the proposed dataset

Pose Information

• Amodal 2D/3D pose information for human

Dataset Statistics

Dataset	COCOA	COCOA-cls	D2S	DYCE	Ours
Image/Video	Image	Image	Image	Image	Video
Resolution	275K pix	275K pix	3M pix	1M pix	1M pix
	-	-	1440×1920	1000×1000	800×1280
Synthetic/Real	Real	Real	Real	Synthetic	Synthetic
# of images	5,073	3499	5,600	5,500	111,654
# of classes	-	80	60	79	162
# of instances	46,314	10,562	28,720	85,975	1,896,295
# of occluded instances	28,106	5,175	16,337	70,766	1,653,980
Avg. occlusion rate	18.8%	10.7%	15.0%	27.7%	56.3%

Baselines

- MaskRCNN
- MaskAmodal: a variant of MaskRCNN predicting the amodal mask
- MaskJoint: jointly predicting modal and amodal masks

Baselines

- MaskRCNN
- MaskAmodal: a variant of MaskRCNN predicting the amodal mask
- MaskJoint: jointly predicting modal and amodal masks using two output heads

				Modal	mask					А	modal n	nask		
	AP ₅₀	AP	AP_{50}^P	AP_{50}^H	AP_{50}^L	AP_{50}^M	AP_{50}^S	AP ₅₀	AP	AP_{50}^P	AP_{50}^H	AP_{50}^L	AP_{50}^M	AP_{50}^S
MaskRCNN [38]	40.6	28.0	51.2	13.5	74.6	20.2	5.6	-	-	-	-	-	-	-
MaskAmodal [30]	-	-	-	-	-	-	-	40.4	26.6	51.2	14.8	72.9	20.6	6.8
MaskJoint	38.8	26.0	49.5	11.9	70.4	17.4	6.4	40.8	26.4	51.2	15.8	73.1	19.6	7.5

Quantitative Results

DAVIS fraction	0%	10%	20%	30%	50%	100%
VideoMatch-S	0.74	0.77	0.78	0.78	0.78	0.79
VideoMatch	0.55	0.66	0.73	0.74	0.78	0.81

Qualitative Results – Amodal Segmentation

Qualitative Results

Image

Groundtruth

Pretrained model on our dataset

Finetuned model on COCOA

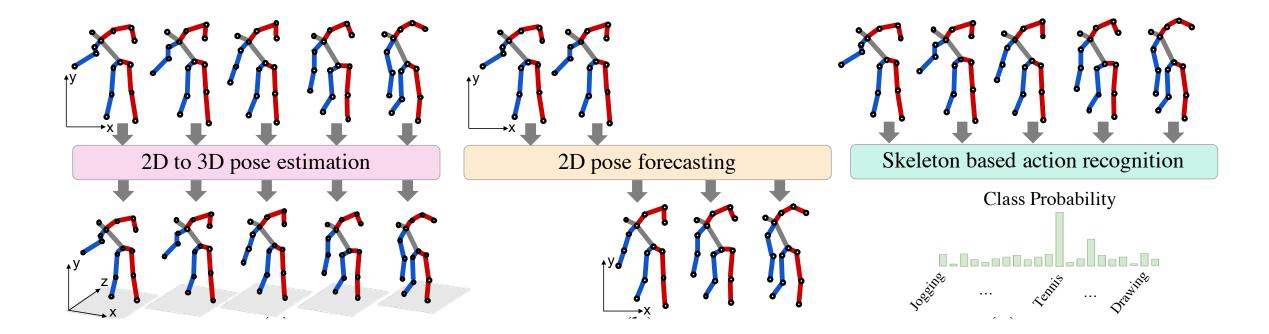
Video Results

Summary

- A dataset for semantic amodal instance-level video object segmentation
- Groundtruth annotations include modal segmentation, amodal segmentation, semantic class labels and human pose information
- Transfer to real world COCOA dataset training with the proposed dataset

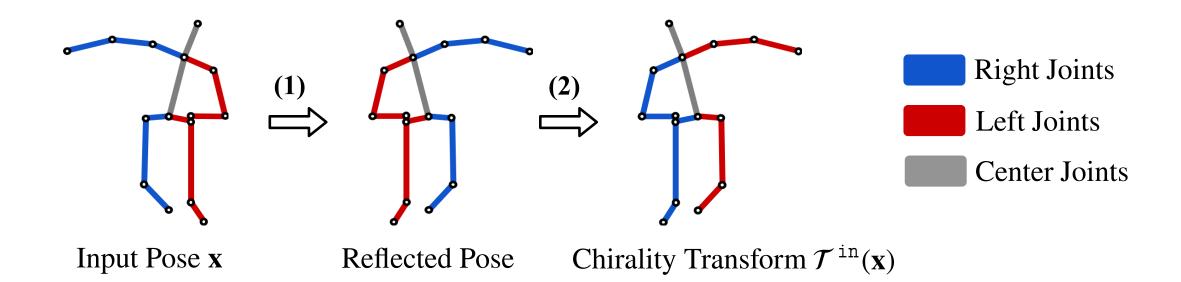
http://sailvos.web.illinois.edu

Pose regression tasks



Data augmentation for pose regression tasks?

Data augmentation for pose regression tasks



Disadvantages of Data Augmentation

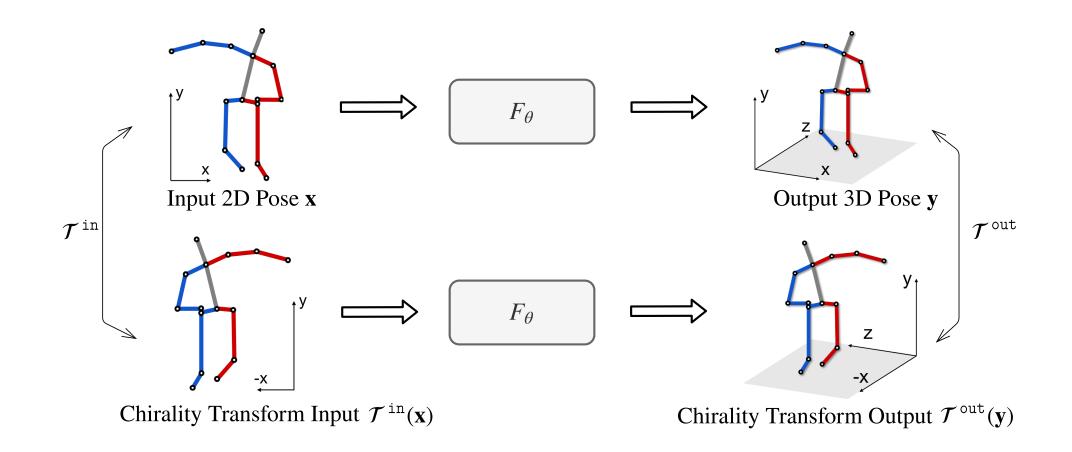
- Deep nets need to learn equivariance from data
- Sample-inefficient
- Computationally more demanding

Question:

Can we develop deep nets that are equivariant w.r.t. pose transforms?

Chirality Nets

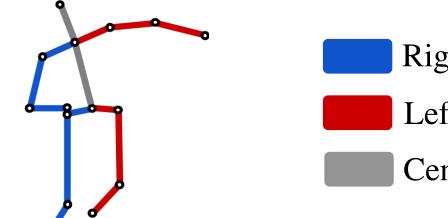
• Deep nets that guarantee the equivariant output

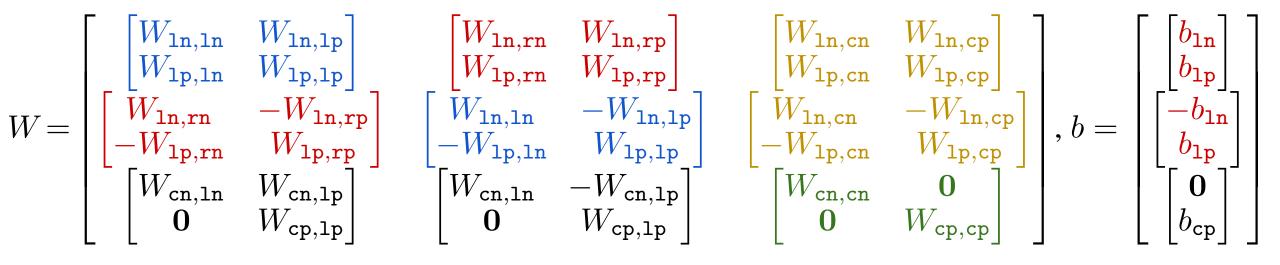


Joint with Raymond Yeh, Yuan-Ting Hu NeurIPS 2019

How to do it

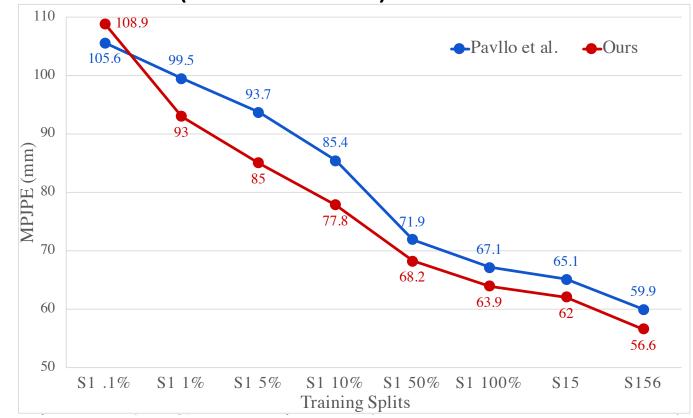
- Define groups (right, left, center)
- Order sample data





2D to 3D Benefits of Chirality Nets

- No data-augmentation necessary
- More sample efficient (Human3.6M)



2D to 3D Benefits of Chirality Nets

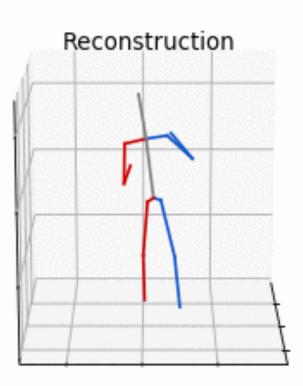
• Human3.6M dataset

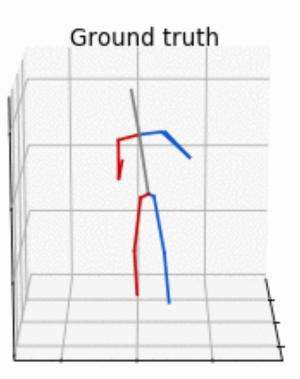
Approach	Dir.	Disc.	Eat	Greet	Phone	Photo	Pose	Purch.	Sit	SitD.	Smoke	Wait	WalkD.	Walk	WalkT.	Avg
Pavlakos [35] (CVPR'18)	48.5	54.4	54.4	52.0	59.4	65.3	49.9	52.9	65.8	71.1	56.6	52.9	60.9	44.7	47.8	56.2
Yang [52] (CVPR'18)	51.5	58.9	50.4	57.0	62.1	65.4	49.8	52.7	69.2	85.2	57.4	58.4	43.6	60.1	47.7	58.6
Luvizon [28] (CVPR'18) (\$)	49.2	51.6	47.6	50.5	51.8	60.3	48.5	51.7	61.5	70.9	53.7	48.9	57.9	44.4	48.9	53.2
Hossain [17] (ECCV'18)(†, ◊)	48.4	50.7	57.2	55.2	63.1	72.6	53.0	51.7	66.1	80.9	59.0	57.3	62.4	46.6	49.6	58.3
Lee [25] (ECCV'18)(†, ◊)	40.2	49.2	47.8	52.6	50.1	75.0	50.2	43.0	55.8	73.9	54.1	55.6	58.2	43.3	43.3	52.8
Pavllo [36] (CVPR'19)	47.1	50.6	49.0	51.8	53.6	61.4	49.4	47.4	59.3	67.4	52.4	49.5	55.3	39.5	42.7	51.8
Pavllo [36] (CVPR'19)(†)	45.9	47.5	44.3	<u>46.4</u>	50.0	56.9	45.6	44.6	58.8	66.8	47.9	44.7	49.7	33.1	34.0	47.7
Pavllo [36] (CVPR'19)(†, ‡)	45.2	46.7	43.3	45.6	48.1	55.1	44.6	44.3	<u>57.3</u>	65.8	47.1	44.0	49.0	32.8	33.9	46.8
Ours, single-frame	47.4	49.9	47.4	51.1	53.8	61.2	48.3	45.9	60.4	67.1	52.0	48.6	54.6	40.1	43.0	51.4
Ours (†)	44.8	46.1	43.3	<u>46.4</u>	<u>49.0</u>	<u>55.2</u>	44.6	<u>44.0</u>	58.3	62.7	47.1	43.9	<u>48.6</u>	32.7	33.3	46.7

Joint with Raymond Yeh, Yuan-Ting Hu NeurIPS 2019

Qualitative Results

Input





Joint with Raymond Yeh, Yuan-Ting Hu NeurIPS 2019

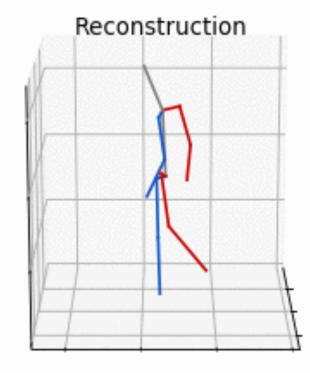
Qualitative Results

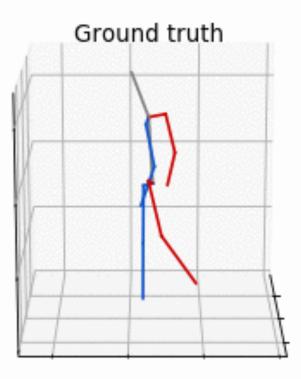
Input

. . .

۰.

٠





Forecasting Benefits of Chirality Nets

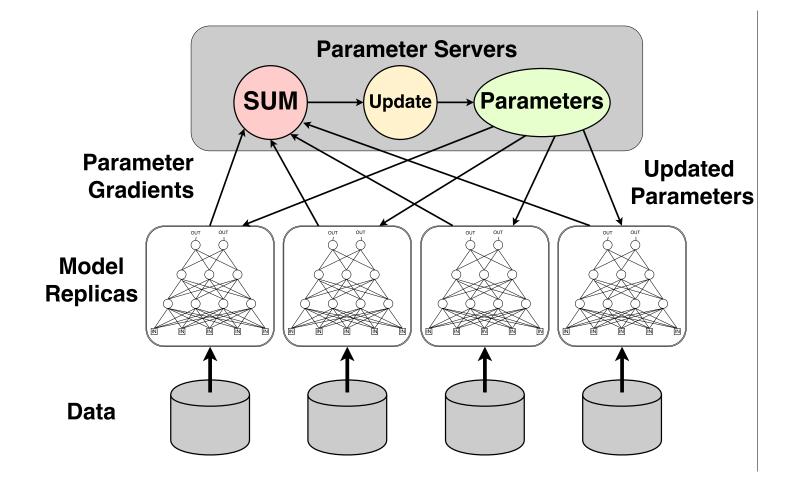
	Prediction Steps Av														Avg.		
Approach	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	-
Residual [29] (CVPR ¹ 7)	82.4	68.3	58.5	50.9	44.7	40.0	36.4	33.4	31.3	29.5	28.3	27.3	26.4	25.7	25.0	24.5	39.5
3D-PFNet [3](CVPR'17)	79.2	60.0	49.0	43.9	41.5	40.3	39.8	39.7	40.1	40.5	41.1	41.6	42.3	42.9	43.2	43.3	45.5
TP-RNN [5] (WACV'19)	84.5	72.0	64.8	60.3	57.2	55.0	53.4	52.1	50.9	50.0	49.3	48.7	48.3	47.9	47.6	47.3	55.6
Baseline w/o aug.	87.3	75.7	68.5	64.0	61.0	59.1	57.6	56.3	55.4	54.9	54.5	54.5	54.4	54.5	54.6	54.7	60.4
Baseline w/ aug.	86.9	75.2	67.9	63.5	60.4	58.4	57.0	55.8	55.1	54.5	54.1	54.0	53.9	53.9	54.0	54.0	59.9
Baseline w/ aug.(‡)	87.0	75.5	68.4	64.1	61.0	59.1	57.5	56.3	55.5	55.0	54.7	54.7	54.6	54.7	54.7	54.7	60.5
Ours	87.5	77.0	68.7	64.2	61.2	59.2	57.6	56.5	55.7	55.1	54.7	54.6	54.4	54.5	54.5	54.5	60.6

Deep Net Training

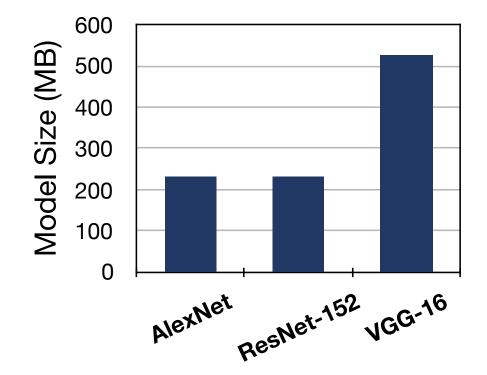
Algorithm:

- Load a batch of samples
- Compute predictions for every sample
- Compare predictions to groundtruth
- Backpropagate error
- Update parameters

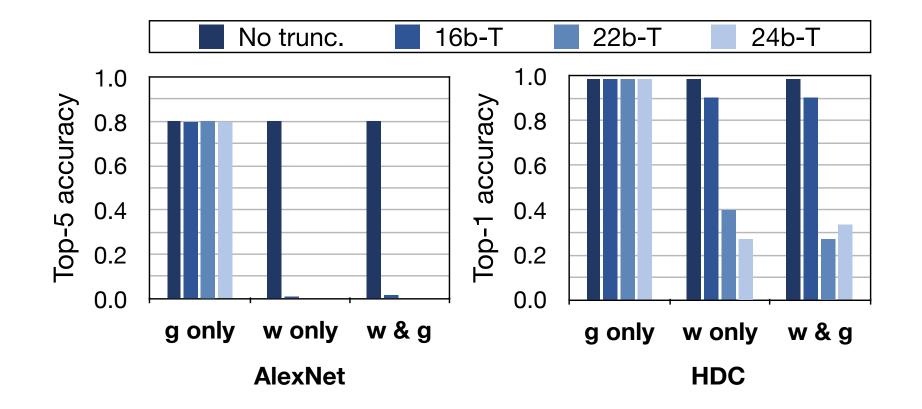
Distributed Deep Net Training



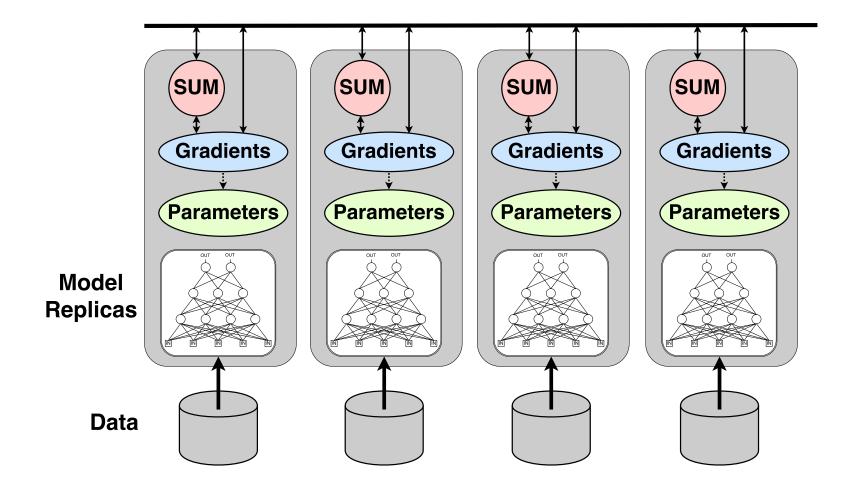
Communication is expensive



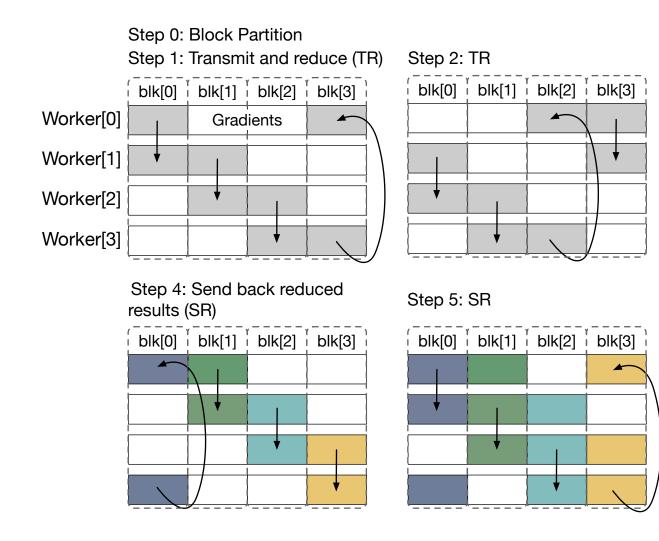
Parameters are not suitable for lossy communication



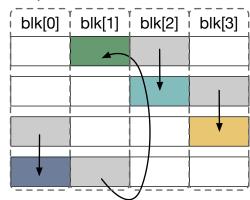
Idea



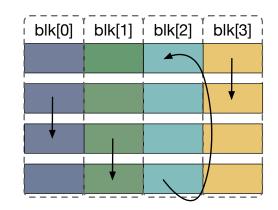
Efficient communication



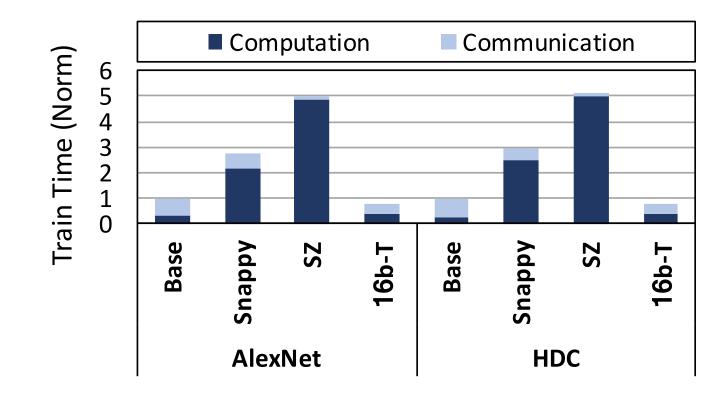
Step 3: TR



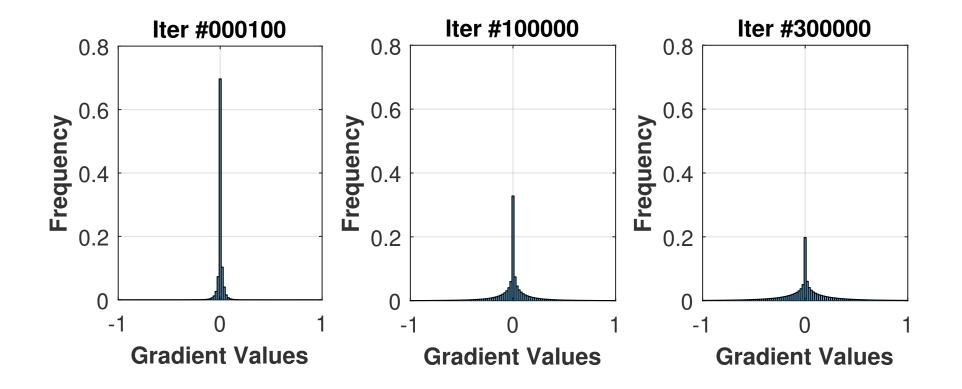
Step 6: SR



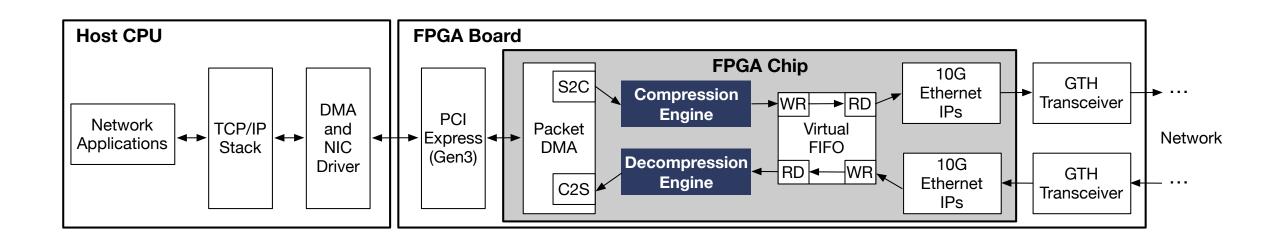
Standard Compression



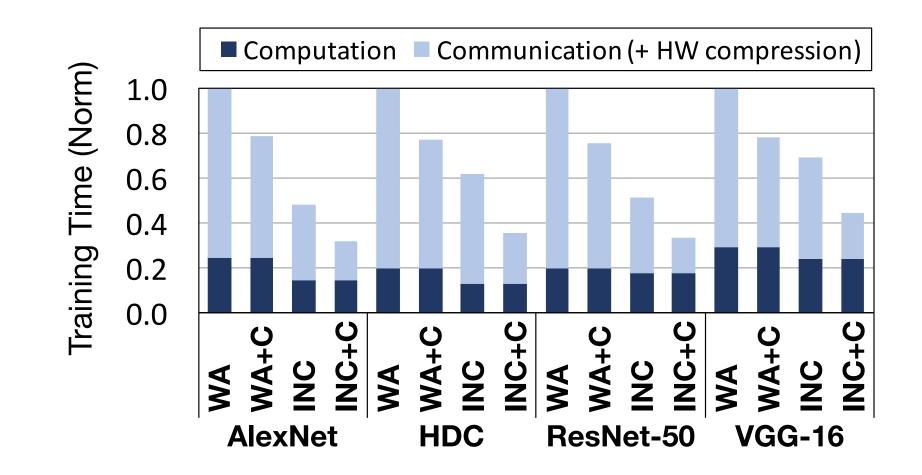
Dedicated Compression



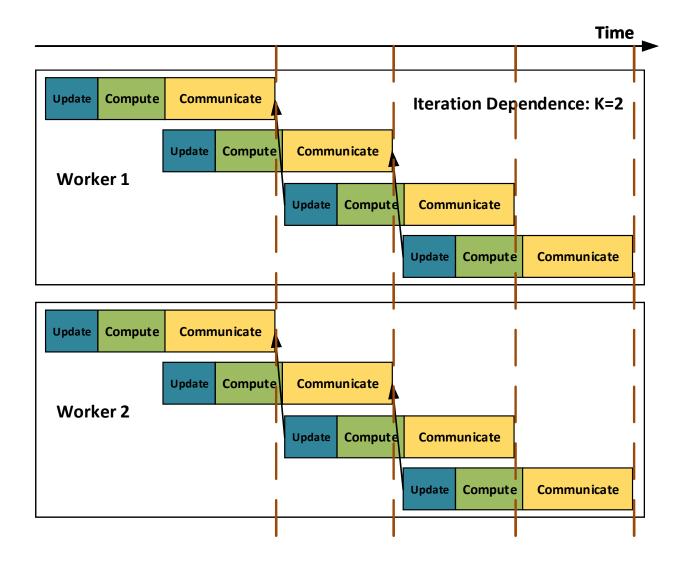
Compression in NIC



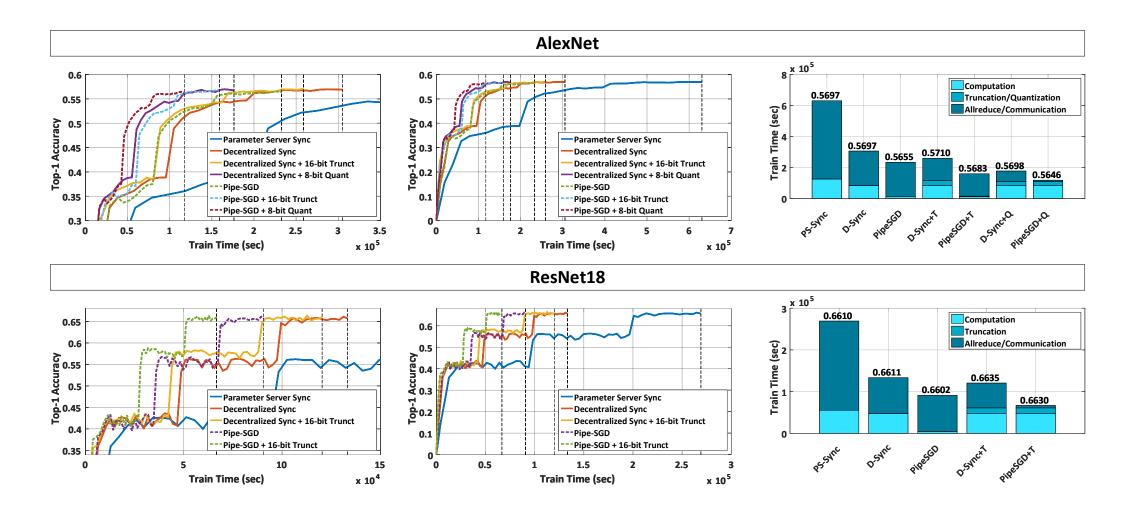
Results



Pipelining is feasible



Results



Learning to Anticipate

Observation

(1) Revealing Priors

(2) Seeing the Unseen

(3) Anticipating the Future

Contact:

- http://aschwing.ece.Illinois.edu
- <u>http://alexander-schwing.de</u>
- <u>aschwing@Illinois.edu</u>