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AI – The Next Decade



Computer Vision and Machine Learning 
Success
Models which analyze work very well
• Image classification
• Object detection
• Semantic segmentation
• Human pose estimation



Our quest to personalize life
Models which anticipate

Combine the vision of David Marr:
“2D to 3D reasoning”

and Rodolfo Llinas, Kenneth Craik:
“a creature must anticipate outcome of movement to navigate safely”



Major Ingredients to Anticipate

• Interaction reasoning
• Revealing priors
• Holistic object understanding
• Capturing ambiguity



Major Ingredients to Anticipate

• Interaction reasoning
• Revealing priors
• Holistic object understanding
• Modeling ambiguity



Instance Level Video Object Segmentation



Weakly Supervised Setting

• Given objects outlined in first frame
• Predict object contours in subsequent 

frames

Classical Deep-Net Approaches:
• Train a classifier using first frame data
• Run on remaining frames

Concern: training at runtime is slow



VideoMatch: Matching based Video Object 
Segmentation 
Goals:
• Efficient algorithm that does not require fine-tuning
• Combination of detection and tracking
• Implicit extraction of temporal information

See also: Voigtlaender et al. 2019, Vondrick et al. 2018



VideoMatch Approach

Idea: Learning to match feature representations
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VideoMatch Softmatching

Idea: Learning to match feature representations
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VideoMatch Extensions

• Online Update: augment foreground and background sets
• Outlier Removal

6 Yuan-Ting Hu, Jia-Bin Huang, A. G. Schwing

(a) FG pred. yt,init (b) FG pred. yt�1 (c) Extruded pred. ŷt�1 (d) Output pred. yt

Fig. 3: An example of the proposed outlier removal process. We first extrude the predic-
tion from the previous frame (b) to obtain an extruded prediction (c). We then produce
the prediction at the current frame by finding the intersection between (a) and (c).

Hereby, f is a scoring function measuring the similarity between the two feature vectors

x
i
t and m

j. We use the cosine similarity, i.e., f (xi
t ,m

j) = x
j
t ·m j

|x j
t ||m j |

, but any other distance
metric is equally applicable once adequately normalized.

Given the similarity score matrix A, we compute the matching score matrix St of
size h⇥w, respectively its i-th entry (i 2 {1, . . . ,hw}) via

Si
t =

1
K Â

j2Top(Ai,K)

Ai j,

where the set Top(Ai,K) contains the indices with the top K similarity scores in the i-th
row of the similarity score matrix A. K is set to 20 in all our experiments.

Intuitively, we use the average similarity of the top K matches because we assume
a pixel to match to a number of pixels in a region as opposed to only one pixel, which
will be too noisy, or to all pixels, which will be too strict in general as the foreground
or background may be rather diverse. Consequently, we expect a particular pixel to
match to one of the foreground or background regions rather than requiring a pixel
only to match locally or to all regions. Again, an illustration of the soft matching layer,
SML(xt ,m), is presented in Figure 2.

3.3 Outlier removal and online update

Outlier removal. To obtain the final prediction yt for frame t 2 {2, . . . ,T} we convert
the foreground and background matching score matrices into an initial foreground prob-
ability prediction yt,init via upsampling and via a subsequent weighted softmax opera-
tion. Finally, we obtain the prediction yt by comparing the initial prediction yt,init with
yt�1 to remove outliers. More specifically, we first extrude the prediction yt�1 of the
previous frame to find pixels whose distance to the segmentation is less than a thresh-
old dc. We then compute yt from yt,init by removing all initial foreground predictions
that don’t overlap with the extruded prediction ŷt�1. Note that the hat symbol ‘·̂’ refers
to the extrusion operation. This process assumes that the change of the object of interest
is bounded from above. In Figure 3, we visualize one example of the current foreground
prediction yt,init, previous foreground prediction yt�1, the extruded prediction ŷt�1, and
the final foreground prediction yt .
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VideoMatch Results
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(a) mIoU vs. speed
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(b) F vs. speed

Fig. 4: Performance comparison on the DAVIS-16 validation set. The x axis denotes
the average running time per frame in seconds (log scale) and the y axis is (a) mIoU
(Jaccard index) and (b) F score (contour accuracy).

Table 2: Evaluation on the Youtube-Object dataset [40, 41] using Jaccard index (mIoU).
Sequence OURS OnAVOS MSK OSVOS OFL JFS BVS SCF AFS FST HBT LTV

Fine-tuned? - Yes Yes Yes - - - - - - - -

Aeroplane 0.867 0.0.902 0.816 0.882 0.899 0.89 0.868 0.863 0.799 0.709 0.736 0.137
Bird 0.867 0.879 0.829 0.857 0.842 0.816 0.809 0.81 0.784 0.706 0.561 0.122
Boat 0.795 0.816 0.747 0.775 0.74 0.742 0.651 0.686 0.601 0.425 0.578 0.108
Car 0.880 0.738 0.670 0.796 0.809 0.709 0.687 0.694 0.644 0.652 0.339 0.237
Cat 0.735 0.759 0.696 0.708 0.683 0.677 0.559 0.589 0.504 0.521 0.305 0.186
Cow 0.775 0.787 0.750 0.778 0.798 0.791 0.699 0.686 0.657 0.445 0.418 0.163
Dog 0.790 0.809 0.752 0.813 0.766 0.703 0.685 0.618 0.542 0.653 0.368 0.18
Horse 0.715 0.742 0.649 0.728 0.726 0.678 0.589 0.54 0.508 0.535 0.443 0.115
Motorbike 0.731 0.663 0.498 0.735 0.737 0.615 0.605 0.609 0.583 0.442 0.489 0.106
Train 0.818 0.838 0.777 0.757 0.763 0.782 0.652 0.663 0.624 0.296 0.392 0.196

Average 0.797 0.793 0.718 0.783 0.776 0.74 0.68 0.676 0.625 0.538 0.463 0.155

finetuning, i.e., OSVOS�, OnAVOS�, MaskRNN� and OFL. We further finetune our
method (denoted as OURS-FT), and the performance is competitive among the base-
lines while the computational time is much faster. Note that OnAVOS+ in Table 4 is
OnAVOS with upsampling layers on top and model ensembles.

4.5 Ablation study

We study the important components of the proposed method. Subsequently, we discuss
the effect of outlier removal and online update, the effect of K, the effect of foreground
and background matching, the effect of fine-tuning and the memory consumption of the
proposed approach.
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Fig. 5: (a) The effect of K when computing the Top K similarity scores in the soft match-
ing layer. (b) The effect of fine-tuning of our approach compared with other baselines.
Both results are shown using the DAVIS-16 validation dataset.

Table 5: Ablation study of the three modules in our approach: (1) outlier removal, (2)
online background update, and (3) online foreground update, assessed on the DAVIS-16
validation set.

Outlier removal BG update FG update mIoU

- - - 0.792
X - - 0.796
X X - 0.799
X X X 0.802

similarity, is only 0.527 in mIoU on DAVIS-16 while having both foreground and back-
ground similarity computed achieves 0.792.

Online fine-tuning: We would like to point out that the network in our method can
be fune-tuned during testing after having the groundtruth mask of the first frame. We
show the trade-off between fine-tuning time and performance on DAVIS-16 in Table 5
(b). Specifically, we show the average running per frame taking the fine-tuning step into
account, and compare with OSVOS, OSVOS-BS (OSVOS without the post-processing
step), OnAVOS and OnAVOS-NA (OnAVOS without test time augmentation). Note that
the time axis scaling is again logarithmic. The bottom left point of each curve denotes
performance without fine-tuning. Clearly, the performance of our approach outperforms
other baselines if fine-tuning is prohibited. After fine-tuning, our method can be further
improved and still runs efficiently, taking 2.5 seconds per frame while other baselines
require more than 10 seconds to achieve the peak. Note that we don’t have any post-
processing step to refine the segmentation mask in our method while still achieving
competitive results.

Memory consumption: For a video with resolution 480⇥854, our approach requires
8.5 GB of GPU memory to train with the original resolution and a batchsize of 1. How-
ever, it only requires 4.9 GB of GPU memory during testing. In contrast, the baseline
OnAVOS requires 10.7 GB memory during online fine-tuning and testing. Hence, our
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Fig. 5: (a) The effect of K when computing the Top K similarity scores in the soft match-
ing layer. (b) The effect of fine-tuning of our approach compared with other baselines.
Both results are shown using the DAVIS-16 validation dataset.

Table 5: Ablation study of the three modules in our approach: (1) outlier removal, (2)
online background update, and (3) online foreground update, assessed on the DAVIS-16
validation set.

Outlier removal BG update FG update mIoU

- - - 0.792
X - - 0.796
X X - 0.799
X X X 0.802

similarity, is only 0.527 in mIoU on DAVIS-16 while having both foreground and back-
ground similarity computed achieves 0.792.

Online fine-tuning: We would like to point out that the network in our method can
be fune-tuned during testing after having the groundtruth mask of the first frame. We
show the trade-off between fine-tuning time and performance on DAVIS-16 in Table 5
(b). Specifically, we show the average running per frame taking the fine-tuning step into
account, and compare with OSVOS, OSVOS-BS (OSVOS without the post-processing
step), OnAVOS and OnAVOS-NA (OnAVOS without test time augmentation). Note that
the time axis scaling is again logarithmic. The bottom left point of each curve denotes
performance without fine-tuning. Clearly, the performance of our approach outperforms
other baselines if fine-tuning is prohibited. After fine-tuning, our method can be further
improved and still runs efficiently, taking 2.5 seconds per frame while other baselines
require more than 10 seconds to achieve the peak. Note that we don’t have any post-
processing step to refine the segmentation mask in our method while still achieving
competitive results.

Memory consumption: For a video with resolution 480⇥854, our approach requires
8.5 GB of GPU memory to train with the original resolution and a batchsize of 1. How-
ever, it only requires 4.9 GB of GPU memory during testing. In contrast, the baseline
OnAVOS requires 10.7 GB memory during online fine-tuning and testing. Hence, our
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VideoMatch Results

Qualitative Results (Davis 2016)
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VideoMatch Results

Qualitative Results (Davis 2017)
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VideoMatch Results

Qualitative Results (Jumpcut - Trained on Davis 17)
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VideoMatch Results

Qualitative Results (YouTube-Objects – Trained on Davis 2017)
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Amodal Segmentation

• Recognizing the full extent of the object



Amodal Segmentation

• Recognizing the full extent of the object



Difficulties

• Humans are capable of amodal segmentation 
• A challenging task for AI systems
• Occlusion reasoning
• Predicting the invisible part
• Expensive to get the groundtruth



Current Amodal Segmentation Datasets
• COCOA • D2S • DYCE

Real data Real data Synthetic data

Indoor static sceneGroceries on the tableA subset of MS-COCO dataset



Current Amodal Segmentation Datasets
• COCOA • D2S • DYCE

Real data Real data Synthetic data

Indoor static sceneGroceries on the tableA subset of MS-COCO dataset

All of them are image datasets



Temporal Information is Missing!

• Temporal context helps to predict amodal segmentation



A Dataset for Amodal Video Segmentation

• A synthetic dataset using Grand Theft Auto V (GTA-V)
• Realistic rendering
• Various scenarios
• Different weather/lighting condition
• Groundtruth annotations from the game

Joint with
Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang

CVPR 2019



A Dataset for Amodal Video Segmentation

• A synthetic dataset using Grand Theft Auto V (GTA-V)
• Realistic rendering
• Various scenarios
• Different weather/lighting condition
• Groundtruth annotations from the game

Joint with
Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang

CVPR 2019



A Dataset for Amodal Video Segmentation

• A synthetic dataset using Grand Theft Auto V (GTA-V)
• Realistic rendering
• Various scenarios
• Different weather/lighting conditions
• Groundtruth annotations from the game

Joint with
Yuan-Ting Hu, Hong-Shuo Chen, Kexin Hui, Jia-Bin Huang

CVPR 2019
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• Realistic rendering
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Example Video
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Example Video
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Controlling the Game

• We use ScriptHook V to control the game
• Altering the weather, time of day and clothing
• Pausing the game
• Toggling the visibility of objects
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Dataset Collection Pipeline

Time of Day 

Clothing

Initialize

Altering Weather Play

wait(50)

(b) All Objects 
Invisible

(a) All Objects 
Displayed

Pause

(c) Display Objects One by One
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How to Compute the Amodal Segmentation

All Objects InvisibleAll Objects Displayed

Display Objects One by One

• Comparing the RGB pixels wouldn’t be robust enough due to 
rendering
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Depth Buffer and Stencil Buffer

• Along with the RGB images, we also record the corresponding depth 
buffer and stencil buffer by hooking into DirectX functions.
• All objects displayed

RGB image Depth buffer Stencil buffer
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Depth Buffer and Stencil Buffer

• Along with the RGB images, we also record the corresponding depth 
buffer and stencil buffer by hooking into DirectX functions.
• Background

RGB image Depth buffer Stencil buffer
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Depth Buffer and Stencil Buffer

• Along with the RGB images, we also record the corresponding depth 
buffer and stencil buffer by hooking into DirectX functions.
• One object displayed

RGB image Depth buffer Stencil buffer
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Computing the Amodal Segmentation

RGB image Depth buffer Stencil buffer
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Computing the Amodal Segmentation

RGB image Amodal segmentation
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Amodal Segmentation
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Visible Mask
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Tracking Objects
• The game assigns a unique ID to each object
• We can track the objects based on the IDs

Amodal

Visible
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Semantic Class Labels

• We are able to obtain the name of the 3D model of each object
• We merge the objects with similar names into 162 classes
• 60% of the classes in MS-COCO can be found in the proposed dataset
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Pose Information

• Amodal 2D/3D pose information for human
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Dataset StatisticsTable 1: Amodal segmentation dataset statistics. Note, for computation of the number of occluded instance we define an
object to be occluded if the occlusion rate is larger than 1%.

Dataset COCOA COCOA-cls D2S DYCE Ours

Image/Video Image Image Image Image Video
Resolution 275K pix 275K pix 3M pix 1M pix 1M pix

- - 1440⇥1920 1000⇥1000 800⇥1280
Synthetic/Real Real Real Real Synthetic Synthetic
# of images 5,073 3499 5,600 5,500 111,654
# of classes - 80 60 79 162
# of instances 46,314 10,562 28,720 85,975 1,896,295
# of occluded instances 28,106 5,175 16,337 70,766 1,653,980
Avg. occlusion rate 18.8% 10.7% 15.0% 27.7% 56.3%

Figure 7: Comparison of the SAIL-VOS dataset with COCOA [110], COCOA-cls [110, 30], D2S [29, 30], and DYCE [24].

the 3D location in the world coordinate, the 3D rotation
matrix, the 2D coordinate on the image plane and the 2D
bounding box.

4. SAIL-VOS Dataset

We collect 111,654 frames in total from GTA-V at a res-
olution of 800⇥ 1280. A total of 201 video sequences are
collected, covering different weather conditions, illumina-
tion, scenes and scenarios as illustrated in Fig. 5. The an-
notation includes semantic instance level segmentation and
amodal segmentation. Moreover, each object is manually
assigned a class label. There are a total of 162 classes
defined in the proposed SAIL-VOS dataset, 48 of which
overlap with the MS-COCO object classes. Moreover,
each class is subdivided into subclasses to provide more
fine-grained semantic information. For instance, the class
road barrier is divided into 6 subclasses, containing
bollard, traffic cone, road pole, etc. Every
object is assigned a class label and a subclass label. We also
have the 2D and 3D pose annotation exclusively for person.

In Fig. 6, we show the number of instances per class in
the dataset. We found the dataset to have a similar distri-
bution as the MS COCO dataset [65]. In Tab. 1 we com-
pare the SAIL-VOS dataset with other amodal segmenta-
tion datasets, i.e., COCOA [110], COCOA-cls [110, 30],
DYCE [24] and D2S [29, 30], looking at the number of in-
stances included in the dataset, the occlusion ratio and the

resolution. In Fig. 7, we also show a detailed comparison
among the amodal datasets, comparing the number of cate-
gories and instances per image, the size of the objects and
the occlusion rate.

Dataset splits: We split the dataset into training, valida-
tion and test set based on the geographic location of the
scenes. The training set contains 160 video sequences
(84,781 images, 1,388,389 objects) while the validation set
contains 41 (26,873 images, 507,906 objects). The portion
of overlapping models between training and validation set
is 32.9%, i.e., there are only 32.9% of the models in the
training set that also appear in the validation set. Note that
the model defines the geometry but different textures may
be used during rendering. In addition to the training and
validation set, we retain a test-dev set and a test-challenge
set for future use.

5. SAIL-VOS Problem Formulation

Because of annotations for modal and amodal seman-
tic segmentation, human pose and depth ordering, a variety
of tasks can be evaluated using the presented SAIL-VOS
dataset. We discuss some of the possibilities next.

Due to the semantic segmentation labels, class-agnostic
and class-specific modal and amodal instance level segmen-
tation for video data can be assessed. Because of the tem-
poral density, frame-based and tracking based formulations
can be evaluated. Because the proposed dataset is syn-
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Baselines

• MaskRCNN
• MaskAmodal: a variant of MaskRCNN predicting the amodal mask
• MaskJoint: jointly predicting modal and amodal masks
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Baselines

• MaskRCNN
• MaskAmodal: a variant of MaskRCNN predicting the amodal mask
• MaskJoint: jointly predicting modal and amodal masks using two 

output heads
Table 2: Segmentation performance on the SAIL-VOS dataset in the class-agnostic setting. Both the modal mask (visible
mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold 50%) and AP (average precision)
using four methods.

Modal mask Amodal mask
AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50 AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50

MaskRCNN [38] 40.6 28.0 51.2 13.5 74.6 20.2 5.6 - - - - - - -
MaskAmodal [30] - - - - - - - 40.4 26.6 51.2 14.8 72.9 20.6 6.8
MaskJoint 38.8 26.0 49.5 11.9 70.4 17.4 6.4 40.8 26.4 51.2 15.8 73.1 19.6 7.5

Table 3: Segmentation performance on the SAIL-VOS dataset in the class-specific setting. Both the modal mask (visible
mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold of 50%) and AP (average
precision) using four methods.

Modal mask Amodal mask
AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50 AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50

MaskRCNN [38] 24.1 14.3 24.7 17.2 42.8 21.3 4.9 - - - - - - -
MaskAmodal [30] - - - - - - - 23.0 13.0 24.3 16.7 36.6 21.5 6.1

MaskJoint 24.5 14.2 24.1 17.6 38.9 21.0 5.1 24.8 14.1 24.3 18.9 37.8 21.5 5.7

Table 4: IoU on the DAVIS validation set.
DAVIS fraction 0% 10% 20% 30% 50% 100%

VideoMatch-S 0.74 0.77 0.78 0.78 0.78 0.79
VideoMatch 0.55 0.66 0.73 0.74 0.78 0.81

thetic and due to available smaller real-world amodal image
datasets, transferability can be measured.

Future possibilities of the collected dataset include rea-
soning about depth ordering, 2D and 3D pose estimation.
We will not focus on those directions subsequently.

In the following we focus on class-agnostic and class-
specific modal and amodal instance level video segmen-
tation using frame-based techniques. We focus on frame-
based techniques to ensure comparability with recently pro-
posed existing amodal segmentation methods. We also eval-
uate transferability to assess whether training on synthetic
data can improve video object segmentation. We defer an
assessment of tracking based formulations to future work.
Importantly, we make all the baselines, the dataset and
hopefully an evaluation server available to the community.1

6. Experiments

In the following we first present evaluation metrics for
class-agnostic and class-specific modal and amodal instance
level segmentation using frame-based detection techniques,
before discussing quantitative and qualitative results.
Evaluation Metrics: Since we focus on frame-based de-
tection techniques we follow Pascal VOC [25] and MS-
COCO [65] and use average precision (AP) as the evalua-
tion metric for the modal segmentation and the amodal seg-
mentation. The AP is computed by averaging the APs at

1http://sailvos.web.illinois.edu

increasing IoU thresholds from 0.5 to 0.95. We also report
AP50, which is the AP with an IoU threshold of 0.5.

To better assess a method we look at a variety of data
splits. We report APP

50 for objects with no or partial occlu-
sion (occlusion rate less than 0.25) and APH

50 for heavily oc-
cluded objects (occlusion rate larger than or equal to 0.25).
Also, we report APL

50, APM
50 and APS

50 to evaluate the perfor-
mance of segmenting large (area larger than 962), medium
(area between 322 to 962) and small objects (area less than
322).

There are two common settings for evaluating amodal
segmentation: the class-agnostic setting, e.g., the COCOA
dataset evaluation in [110] and the class-specific setting,
e.g., the COCOA-cls and D2S evaluation in [30]. In the
class-agnostic setting, the network is trained to detect object
segments without using the class label. In the class-specific
setting, the network is trained to detect instance level se-
mantic object segments. We evaluate the frame-based de-
tection techniques in both of the settings on the proposed
SAIL-VOS dataset. For the object-specific setting, for now,
we focus on 24 classes in our dataset for simplicity.

Approaches: Irrespective of the class-agnostic or class-
specific setting we evaluate three methods. First, we apply
MaskRCNN [38] for predicting the modal masks, training
on the SAIL-VOS training set and testing on the SAIL-VOS
validation set. The baseline MaskAmodal is a MaskRCNN
trained on the amodal masks of the SAIL-VOS dataset.
This approach is tested and discussed in [30] and accord-
ing to [30] MaskAmodal is the state-of-the-art method for
predicting the amodal mask on the COCOA [110] and
COCOA-cls [110, 30] datasets. Note that occluded objects
can cause issues because the model simply assumes the oc-
cluder is the object of interest. MaskJoint aims to jointly
predict the modal and amodal mask and is our extension of
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Table 2: Segmentation performance on the SAIL-VOS dataset in the class-agnostic setting. Both the modal mask (visible
mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold 50%) and AP (average precision)
using four methods.

Modal mask Amodal mask
AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50 AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50

MaskRCNN [38] 40.6 28.0 51.2 13.5 74.6 20.2 5.6 - - - - - - -
MaskAmodal [30] - - - - - - - 40.4 26.6 51.2 14.8 72.9 20.6 6.8
MaskJoint 38.8 26.0 49.5 11.9 70.4 17.4 6.4 40.8 26.4 51.2 15.8 73.1 19.6 7.5

Table 3: Segmentation performance on the SAIL-VOS dataset in the class-specific setting. Both the modal mask (visible
mask) and amodal mask are evaluated. We report AP50 (average precision at IoU threshold of 50%) and AP (average
precision) using four methods.

Modal mask Amodal mask
AP50 AP APP

50 APH
50 APL

50 APM
50 APS

50 AP50 AP APP
50 APH

50 APL
50 APM

50 APS
50

MaskRCNN [38] 24.1 14.3 24.7 17.2 42.8 21.3 4.9 - - - - - - -
MaskAmodal [30] - - - - - - - 23.0 13.0 24.3 16.7 36.6 21.5 6.1

MaskJoint 24.5 14.2 24.1 17.6 38.9 21.0 5.1 24.8 14.1 24.3 18.9 37.8 21.5 5.7

Table 4: IoU on the DAVIS validation set.
DAVIS fraction 0% 10% 20% 30% 50% 100%

VideoMatch-S 0.74 0.77 0.78 0.78 0.78 0.79
VideoMatch 0.55 0.66 0.73 0.74 0.78 0.81

thetic and due to available smaller real-world amodal image
datasets, transferability can be measured.

Future possibilities of the collected dataset include rea-
soning about depth ordering, 2D and 3D pose estimation.
We will not focus on those directions subsequently.

In the following we focus on class-agnostic and class-
specific modal and amodal instance level video segmen-
tation using frame-based techniques. We focus on frame-
based techniques to ensure comparability with recently pro-
posed existing amodal segmentation methods. We also eval-
uate transferability to assess whether training on synthetic
data can improve video object segmentation. We defer an
assessment of tracking based formulations to future work.
Importantly, we make all the baselines, the dataset and
hopefully an evaluation server available to the community.1

6. Experiments

In the following we first present evaluation metrics for
class-agnostic and class-specific modal and amodal instance
level segmentation using frame-based detection techniques,
before discussing quantitative and qualitative results.
Evaluation Metrics: Since we focus on frame-based de-
tection techniques we follow Pascal VOC [25] and MS-
COCO [65] and use average precision (AP) as the evalua-
tion metric for the modal segmentation and the amodal seg-
mentation. The AP is computed by averaging the APs at

1http://sailvos.web.illinois.edu

increasing IoU thresholds from 0.5 to 0.95. We also report
AP50, which is the AP with an IoU threshold of 0.5.

To better assess a method we look at a variety of data
splits. We report APP

50 for objects with no or partial occlu-
sion (occlusion rate less than 0.25) and APH

50 for heavily oc-
cluded objects (occlusion rate larger than or equal to 0.25).
Also, we report APL

50, APM
50 and APS

50 to evaluate the perfor-
mance of segmenting large (area larger than 962), medium
(area between 322 to 962) and small objects (area less than
322).

There are two common settings for evaluating amodal
segmentation: the class-agnostic setting, e.g., the COCOA
dataset evaluation in [110] and the class-specific setting,
e.g., the COCOA-cls and D2S evaluation in [30]. In the
class-agnostic setting, the network is trained to detect object
segments without using the class label. In the class-specific
setting, the network is trained to detect instance level se-
mantic object segments. We evaluate the frame-based de-
tection techniques in both of the settings on the proposed
SAIL-VOS dataset. For the object-specific setting, for now,
we focus on 24 classes in our dataset for simplicity.

Approaches: Irrespective of the class-agnostic or class-
specific setting we evaluate three methods. First, we apply
MaskRCNN [38] for predicting the modal masks, training
on the SAIL-VOS training set and testing on the SAIL-VOS
validation set. The baseline MaskAmodal is a MaskRCNN
trained on the amodal masks of the SAIL-VOS dataset.
This approach is tested and discussed in [30] and accord-
ing to [30] MaskAmodal is the state-of-the-art method for
predicting the amodal mask on the COCOA [110] and
COCOA-cls [110, 30] datasets. Note that occluded objects
can cause issues because the model simply assumes the oc-
cluder is the object of interest. MaskJoint aims to jointly
predict the modal and amodal mask and is our extension of
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Summary

• A dataset for semantic amodal instance-level video object 
segmentation
• Groundtruth annotations include modal segmentation, amodal

segmentation, semantic class labels and human pose information
• Transfer to real world COCOA dataset training with the proposed 

dataset
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Pose regression tasks

Data augmentation for pose regression tasks?
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Figure 3: Illustration of pose regression tasks: (a) 2D to 3D pose estimation; (b) 2D pose forecasting; and (c)
skeleton-based action recognition.
Approach Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavlakos [35] (CVPR‘18) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Yang [52] (CVPR‘18) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Luvizon [28] (CVPR‘18) (⇧) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2
Hossain [17] (ECCV‘18)(†, ⇧) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee [25] (ECCV‘18)(†, ⇧) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Pavllo [36] (CVPR‘19) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Pavllo [36] (CVPR‘19)(†) 45.9 47.5 44.3 46.4 50.0 56.9 45.6 44.6 58.8 66.8 47.9 44.7 49.7 33.1 34.0 47.7
Pavllo [36] (CVPR‘19)(†, ‡) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Ours, single-frame 47.4 49.9 47.4 51.1 53.8 61.2 48.3 45.9 60.4 67.1 52.0 48.6 54.6 40.1 43.0 51.4
Ours (†) 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Table 1: Results on the Human3.6M dataset: reconstruction error using Protocol 1 (MPJPE) in mm. The best
result is boldface and the second best is underlined. † indicates temporal models, ⇧ uses ground-truth bounding
box, and ‡ indicates test-time augmentation.

randomness. Importantly, during test no data-augmentation is performed and a single forward pass is
sufficient to obtain an ‘averaged’ result.

4 Experiments

We evaluate our approach on a variety of tasks, including 2D to 3D pose estimation, 2D pose
forecasting, and skeleton based action recognition. For each task, we describe the dataset, metric, and
implementation before discussing the results.

4.1 2D to 3D pose estimation

Task. 3D human pose estimation can be decoupled into the tasks of 2D keypoint detection and 2D to
3D pose estimation. We focus on the latter task, i.e., given a sequence of 2D keypoints, the task is to
estimate the corresponding 3D human pose. See Fig. 3 (a) for an illustration.

Dataset and metric. We evaluate on two standard datasets, the Human3.6M [19] and the HumanEva-
I [43]. Human3.6M is a large scale dataset of human motion with 3.6 million video frames. The dataset
consists of 11 subjects performing 15 different actions. Following prior work [34, 46, 30, 45, 28, 36],
each human pose is represented by a 17-joint skeleton. We use the same train and test subject splits.
HumanEva-I is a smaller dataset consisting of four subjects and six actions. To be consistent with
prior work [35, 25, 36], we use the same train and test splits evaluated over the actions of (walk, jog,
and box). For both of these datasets, we consider the setting where we train one model for all actions.

We report the two standard metrics used in prior work: Protocol 1 (MPJPE) which is the mean per-
joint position error between the prediction and ground-truth [30, 34, 36] and Protocol 2 (P-MPJPE)
which is the error, after alignment, between the prediction and ground-truth [30, 45, 17, 36].

Implementation details. Our model follows the supervised training procedure and network design
of Pavllo et al. [36]. Our network is the identical temporal convolutional network architecture,
where each layer is replaced with its chiral version, i.e., 1D dilated convolution, batch-normalization,
and dropout layers. We also replace ReLU non-linearities with Tanh to achieve equivariance. No
additional architecture changes were made. For Human3.6M, we use 2D keypoints extracted from
CPN [4] with Mask R-CNN [15] bounding boxes released by Pavllo et al. [36]. For HumanEva-I, we
use the 2D keypoint detections from Mask R-CNN released by Pavllo et al. [36].

Results. In Tab. 1, we report the performance on the Human3.6M data using Protocol 1 (MPJPE).
Our approach outperforms the state-of-the-art [36] which uses test-time augmentation by 0.1 mm in
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Data augmentation for pose regression tasks

(1) (2)

Figure 1: Illustration of the chirality transformation. The transformation includes two operations, (1) a reflection
of the pose, i.e., a negation of the x-coordinates; and (2) a switch of the left / right joint labeling. The ordering of
the two operations are interchangeable.

transforming a typical deep net into its chiral counterpart results in a reduction of the number of
trainable parameters, and lower computation complexity due to the symmetry in the model weights.
We find a smaller number of trainable parameters reduces the sample complexity, i.e., the models
need less training data.

We demonstrate the generalization and effectiveness of our approach on three pose regression tasks
over four datasets: 3D pose estimation on the Human3.6m [19] and HumanEva dataset [43], 2D pose
estimation on the Penn Action dataset [55] and skeleton-based action recognition on Kinetics-400
dataset [20]. Our approach achieves state-of-the-art results with guarantees on equivariance, lower
number of parameters, and robustness in low-resource settings.

2 Related Work

First we briefly review invariance and equivariance in machine learning and computer vision as well
as human pose regression tasks.

Invariant and equivariant representation. Hand-crafted invariant and equivariant representations
have been utilized widely in computer vision systems for decades, e.g., scale invariance of SIFT [27],
orientation invariance of HOG [9], affine invariance of the Harris detector [31], shift-invariant systems
in image processing [47], etc.

These properties have also been adapted to learned representations. A widely known property is
the translation equivariance of convolutional neural nets (CNN) [24]: through spatial or temporal
parameter sharing, a shifted input leads to a shifted output. Group-equivariant CNNs extend the
equivariance to rotation, mirror reflection and translation [7] by replacing the shift operation with a
more general set of transformations. Other representations for building equivariance into deep nets
have also been proposed, e.g., the Symmetric Network [12], the Harmonic Network [50] and the
Spherical CNN [8].

The aforementioned works focus on deep nets where the input are images. While related, they are
not directly applicable to human pose. For example, a reflection with respect to the y-axis in the
image domain corresponds to a permutation of the pixel locations, i.e., swapping the pixel intensity
between each pixel’s reflected counterpart. In contrast, for human pose, where the input is a vector
representing the human joints’ spatial coordinates, a reflection corresponds to the negation of the
value for each of the joints reflected dimension.

The input representation of deep nets for human pose is more similar to pointsets. Prior work has
explored building permutation equivariant deep nets, i.e., any permutation of input elements results in
the same permutation of output elements. In [53, 37]. Both works utilize parameter sharing to achieve
permutation equivariance. Following these works, graph nets generalize the family of permutation
equvariant networks [40, 23, 14, 13, 1]. For human pose, equivariance to all permutations is too
strong of a property. Recall, our aim is to build models equivariant to the chiral symmetry, which
only involves a specific permutation, e.g., the switch between left and right joints, shown in step (2)
of Fig. 1.

Most relevant to our approach is work by Ravanbakhsh et al. [38]. Ravanbakhsh et al. [38] explore
which type of equivariance can be achieved through parameter sharing. Their approach captures
one specific permutation in the pose symmetric transform, but does not capture the negation from
the reflection, shown in Fig. 1 step (1). In contrast, our approach considers both operations (1)
and (2) jointly, which leads to a different formulation. Lastly, to the best of our knowledge, [38]
only discusses theoretically the construction of equivariant networks. In this work, we design and
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Disadvantages of Data Augmentation

• Deep nets need to learn equivariance from data
• Sample-inefficient
• Computationally more demanding

Question:
Can we develop deep nets that are equivariant w.r.t. pose transforms?



Chirality Nets

• Deep nets that guarantee the equivariant output

Figure 2: Illustration of chirality equivariance for the task of 2D to 3D pose estimation.

implement a variety of building blocks for deep nets and demonstrate the benefits on a wide range of
practical applications in human pose regression tasks.

Human pose applications. For 3D pose estimation from images, recent approaches utilize a two-
step approach: (1) 2D pose keypoints are predicted given a video; (2) 3D keypoints are estimated
given 2D joint locations. The 2D to 3D estimation is formulated as a regression task via deep
nets [34, 46, 30, 45, 10, 35, 52, 28, 17, 25, 36]. Most recently, Pavllo et al. [36] propose to use
temporal convolutions to better capture the temporal information over previous RNN based methods.
They also performed train and test time augmentation based on the chiral-symmetric transformation.
For test time augmentation, they compute the output for both the original input and the transformed
input, using the average outputs as the final prediction. In contrast to our work, we note that Pavllo
et al. [36] need to transform the output of the transformed input back to the original pose. To carefully
assess the benefits of chirality nets, in this work, we closely follow the experiment setup of Pavllo
et al. [36].

For 2D keypoint forecasting, we follow the setup of standard temporal modeling: conditioning on
past observations to predict the future. To improve temporal modeling, recent works, have utilized
different sequence to sequence models for this task [29, 3, 5]. In this work, we closely follow the
experiment setup of Chiu et al. [5].

For action recognition, skeleton based methods have been explored extensively recently [51, 54, 26,
42] due to robustness to illumination changes and cluttered background. Here we closely follow the
experimental setup of Yan et al. [51].

3 Chirality Nets

In the following we first provide the problem formulation for human pose regression, before defining
chirality nets, equivariance and the chirality transform. Subsequently we discuss how to develop
typical layers such as the fully connected layer, the convolution, etc., which make up chirality nets.
The Pytorch implementation and unit-tests of the proposed layers are part of the supplementary
material. We have also included a short Jupyter notebook demo to illustrate the key concepts.

3.1 Problem Formulation

Chirality nets can be applied to regression tasks on coordinates of joints for human pose related task,
i.e., the input corresponds to 2D or 3D coordinates of human joints. For readability, we introduce
the input and output representations for a single frame. Note that for our experiments we generalize
chirality nets to multiple frames by introducing a time dimension.

We let x 2 R|Jin|·|Din| denote the chirality net input, where Jin is the set of all joints and Din is the
dimension index set for an input coordinate. For example, Jin = {‘right wrist’, ‘right shoulder’, . . .}
and Din = {0, 1}, for 2D input joint coordinates. Similarly, we let y 2 R|Jout|·|Dout| refer to the
chirality net output. Note that the dimension of the spatial coordinates at the input and output may be
different, e.g., prediction from 2D to 3D. Also, the number of joints may differ, e.g., when mapping
between different key-point sets.
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How to do it

• Define groups (right, left, center)
• Order sample data

(1) (2)

Figure 1: Illustration of the chirality transformation. The transformation includes two operations, (1) a reflection
of the pose, i.e., a negation of the x-coordinates; and (2) a switch of the left / right joint labeling. The ordering of
the two operations are interchangeable.

transforming a typical deep net into its chiral counterpart results in a reduction of the number of
trainable parameters, and lower computation complexity due to the symmetry in the model weights.
We find a smaller number of trainable parameters reduces the sample complexity, i.e., the models
need less training data.

We demonstrate the generalization and effectiveness of our approach on three pose regression tasks
over four datasets: 3D pose estimation on the Human3.6m [19] and HumanEva dataset [43], 2D pose
estimation on the Penn Action dataset [55] and skeleton-based action recognition on Kinetics-400
dataset [20]. Our approach achieves state-of-the-art results with guarantees on equivariance, lower
number of parameters, and robustness in low-resource settings.

2 Related Work

First we briefly review invariance and equivariance in machine learning and computer vision as well
as human pose regression tasks.

Invariant and equivariant representation. Hand-crafted invariant and equivariant representations
have been utilized widely in computer vision systems for decades, e.g., scale invariance of SIFT [27],
orientation invariance of HOG [9], affine invariance of the Harris detector [31], shift-invariant systems
in image processing [47], etc.

These properties have also been adapted to learned representations. A widely known property is
the translation equivariance of convolutional neural nets (CNN) [24]: through spatial or temporal
parameter sharing, a shifted input leads to a shifted output. Group-equivariant CNNs extend the
equivariance to rotation, mirror reflection and translation [7] by replacing the shift operation with a
more general set of transformations. Other representations for building equivariance into deep nets
have also been proposed, e.g., the Symmetric Network [12], the Harmonic Network [50] and the
Spherical CNN [8].

The aforementioned works focus on deep nets where the input are images. While related, they are
not directly applicable to human pose. For example, a reflection with respect to the y-axis in the
image domain corresponds to a permutation of the pixel locations, i.e., swapping the pixel intensity
between each pixel’s reflected counterpart. In contrast, for human pose, where the input is a vector
representing the human joints’ spatial coordinates, a reflection corresponds to the negation of the
value for each of the joints reflected dimension.

The input representation of deep nets for human pose is more similar to pointsets. Prior work has
explored building permutation equivariant deep nets, i.e., any permutation of input elements results in
the same permutation of output elements. In [53, 37]. Both works utilize parameter sharing to achieve
permutation equivariance. Following these works, graph nets generalize the family of permutation
equvariant networks [40, 23, 14, 13, 1]. For human pose, equivariance to all permutations is too
strong of a property. Recall, our aim is to build models equivariant to the chiral symmetry, which
only involves a specific permutation, e.g., the switch between left and right joints, shown in step (2)
of Fig. 1.

Most relevant to our approach is work by Ravanbakhsh et al. [38]. Ravanbakhsh et al. [38] explore
which type of equivariance can be achieved through parameter sharing. Their approach captures
one specific permutation in the pose symmetric transform, but does not capture the negation from
the reflection, shown in Fig. 1 step (1). In contrast, our approach considers both operations (1)
and (2) jointly, which leads to a different formulation. Lastly, to the best of our knowledge, [38]
only discusses theoretically the construction of equivariant networks. In this work, we design and
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For human pose regression, the task is to learn the parameters ✓ of a model F✓ by minimizing a loss
function, L(✓) =

P
(x,y)2D `(F✓(x),y) over the training dataset D. Hereby, sample loss `(F✓(x),y)

compares prediction F✓ to ground-truth y.

3.2 Chirality Nets, Chirality Equivariance, and Chirality Transforms

Chirality nets exhibit chirality equivariance, i.e., their output is transformed in a “predefined manner”
given that the chirality transform is applied at the input. Note that the input and output dimensions
Din and Dout may differ. To define this chirality equivariance, we hence need to consider a pair of
transformations, one for the input data, T in, and one for the output data, T out. The corresponding
equivariance map is illustrated in Fig. 2 for the task of 2D to 3D pose estimation. Formally, we say a
function F✓ is chirality equivariant w.r.t. (T in, T out) if

T out(F✓(x)) = F✓(T in(x)) 8x 2 R|Jin||Din|.

To define the chirality transform on the input data, i.e., T in, we split the set of joints Jin into ordered
tuples of Jin

l , Jin
r , and Jin

c , each denoting left, right and center joints of the input. Importantly, these
tuples are sorted such that the corresponding left/right joints are at corresponding positions in the
tuple. We also split the dimension index set Din into Din

n and Din
p := Din\Din

n , indicating the
coordinates to, or not to, negate.

For readability and without loss of generality, assume the dimensions of the input x follow the order
of Jin

l , Jin
r , Jin

c , i.e., x = [xl,xr,xc]. Within each vector x(·), we place the coordinates in the set
Din

n before the remaining ones, i.e., xl = [xln,xlp].

Given this construction of the input x, the reflection illustrated in step (1) of Fig. 1 is a matrix
multiplication with a (|Jin||Din|)⇥ (|Jin||Din|) diagonal matrix T in

neg, defined as follows:

T in
neg = diag([�1|Jinl |·|Dinn |,1|Jinl |·|Dinp |,�1|Jinr |·|Dinn |,1|Jinr |·|Dinp |,�1|Jinc |·|Dinn |,1|Jinc |·|Dinp |]),

where 1K indicates a vector of ones of length K. The switch operation illustrated in step (2) of
Fig. 1 is a matrix multiplication with a permutation matrix of dimension (|Jin||Din|)⇥ (|Jin||Din|),
defined as follows:

T in
swi =

2

4
0 I|Jin

l |·|Din| 0
I|Jin

l |·|Din| 0 0
0 0 I|Jin

c |·|Din|

3

5 ,

where IK denotes an identity matrix of size K ⇥K.

Given those matrices, the chirality transform of the input T in(x) is obtained via T in(x) = T in
negT

in
swix.

The chirality transform of the output, T out, is defined similarly, replacing “in” with “out”.

In the following, we introduce layers that satisfy the (T in, T out) chirality equivariance property. This
enables to construct a chirality net F✓, as the composition of equivariant layers remains equivariant.
Note that (T in, T out) chirality equivariance can be specified separately for every deep net layer
which provides additional flexibility. In the following we discuss how to construct layers which
satisfy chirality equivariance.

3.3 Chirality Layers

Fully connected layer. A fully connected layer performs the mapping y = fFC(x;W, b) := Wx+ b.
We achieve equivariance through parameter sharing and odd symmetry:

W =

2

6666664


Wln,ln Wln,lp

Wlp,ln Wlp,lp

� 
Wln,rn Wln,rp

Wlp,rn Wlp,rp

� 
Wln,cn Wln,cp

Wlp,cn Wlp,cp

�


Wln,rn �Wln,rp

�Wlp,rn Wlp,rp

� 
Wln,ln �Wln,lp

�Wlp,ln Wlp,lp

� 
Wln,cn �Wln,cp

�Wlp,cn Wlp,cp

�


Wcn,ln Wcn,lp

0 Wcp,lp

� 
Wcn,ln �Wcn,lp

0 Wcp,lp

� 
Wcn,cn 0

0 Wcp,cp

�

3

7777775
, b =

2

6666664


bln
blp

�


�bln
blp

�


0
bcp

�

3

7777775
.

We color code the shared parameters using identical colors. Each W(·),(·) denotes a matrix, where
the first and the second subscript characterize the dimensions of the output and the input. For
example, Wln,rp computes the output’s left (l) joint’s negated (n) dimensions, from the input’s right
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2D to 3D Benefits of Chirality Nets

• No data-augmentation necessary
• More sample efficient (Human3.6M)

Walk Jog Box Avg.
App. S1 S2 S3 S1 S2 S3 S1 S2 S3 -
Pavlakos [34] 22.3 19.5 29.7 28.9 21.9 23.8 – – – –
Pavlakos [35] 18.8 12.7 29.2 23.5 15.4 14.5 – – – –
Lee [25] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4 –
Pavllo [36] 14.1 10.4 46.8 21.1 13.3 14.0 23.8 34.5 32.3 31.1
Pavllo [36] (‡) 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32.0 30.8
Ours 15.2 10.3 47.0 21.8 13.1 13.7 22.8 31.8 31.0 30.6

Table 2: Results on HumanEva-I for multi-action (MA) mod-
els reported in Protocol 2 (P-MPJPE), lower the better. ‡
indicates test time augmentation.
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Figure 4: Comparisons between our approach
and [36] in limited data settings evaluated using
Protocol 1 on Human3.6M.

Prediction Steps Avg.
Approach 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -
Residual [29] (CVPR‘17) 82.4 68.3 58.5 50.9 44.7 40.0 36.4 33.4 31.3 29.5 28.3 27.3 26.4 25.7 25.0 24.5 39.5
3D-PFNet [3](CVPR‘17) 79.2 60.0 49.0 43.9 41.5 40.3 39.8 39.7 40.1 40.5 41.1 41.6 42.3 42.9 43.2 43.3 45.5
TP-RNN [5] (WACV‘19) 84.5 72.0 64.8 60.3 57.2 55.0 53.4 52.1 50.9 50.0 49.3 48.7 48.3 47.9 47.6 47.3 55.6
Baseline w/o aug. 87.3 75.7 68.5 64.0 61.0 59.1 57.6 56.3 55.4 54.9 54.5 54.5 54.4 54.5 54.6 54.7 60.4
Baseline w/ aug. 86.9 75.2 67.9 63.5 60.4 58.4 57.0 55.8 55.1 54.5 54.1 54.0 53.9 53.9 54.0 54.0 59.9
Baseline w/ aug.(‡) 87.0 75.5 68.4 64.1 61.0 59.1 57.5 56.3 55.5 55.0 54.7 54.7 54.6 54.7 54.7 54.7 60.5
Ours 87.5 77.0 68.7 64.2 61.2 59.2 57.6 56.5 55.7 55.1 54.7 54.6 54.4 54.5 54.5 54.5 60.6

Table 3: Results on Penn action dataset, performance reported in terms of PCK@0.05 (higher the better). (‡)
indicates using test time augmentation.
overall average and achieves the best results in eight out of fifteen sub-categories. We note that, test-
time augmentation employed by Pavllo et al. [36] involves running the network twice for each input.
In contrast, our approach only requires a single forward pass. When comparing without test-time
augmentation, our approach outperforms by 1 mm. Additionally, for the single-frame models, we
observe a more significant reduction in error of 0.4 mm over [36] with test time augmentation. Next,
on HumanEva-I dataset, we also observed an increase in performance using Protocol 1. On average,
our approach achieves a 32.2mm error. This is a 0.8mm decrease over the current state-of-the-art of
33.0mm [36] and a 1.1mm decrease over [36] without test-time augmentation of 33.3mm.

We also performed evaluation using Protocol 2 (P-MPJPE). On Human3.6M we observe that our
approach performs worse than Pavllo et al. [36] by 0.3mm. We note that the loss function is chosen
to optimize Protocol 1, therefore our models are performing better at what they are optimized for. In
Tab. 2, we report the performance on HumanEva-I using Protocol 2 (P-MPJPE). Our model achieves
a 0.2 mm reduction in error over Pavllo et al. [36] on average. Most of the gain is obtained for the
boxing action, possibly due to the symmetric nature of the movement.

Limited data settings. A benefit of fewer model parameters is the potential to obtain better models
with less data. To confirm this, we perform experiments by varying the amount of training data,
starting from 0.1% of subject 1 (S1) to using three subjects S1, S5, S6. The results with comparison
to [36] are shown in Fig. 4. We observe that our approach consistently out-performs [36] in this low
resource settings, except at S1 0.1%. For the reported numbers, we use a batch-size of 64, and all
other hyper-parameters are identical between the models. If we further decrease the batch-size to 32
for S1 0.1%, our approach improves to 100.4mm where [36] improves to 102.3mm.

4.2 2D pose forecasting

Task. 2D pose forecasting is the pose regression task of predicting the future human pose, represented
in 2D keypoints, given present and past human pose. See Fig. 3 (b) for an illustration.

Dataset and metric. We evaluate on the Penn Action dataset [55]. The dataset consists of 2236
videos with 15 actions. Each frame is annotated with 2D keypoints of 13 human joints. We use the
same train and test split as in [3, 5]. Following Chiu et al. [5] we consider initial velocity as being
part of the input and a single model is used for all actions. For a fair comparison with prior work,
we report the ‘Percentage of Correct Keypoint’ metric with a 0.05 threshold (PCK@0.05), which
assesses the accuracy of the predicted keypoints. A predicted keypoint is considered correct if it is
within a 0.05 radius of the ground-truth when considering normalized distance.

Implementation details. Our non-chiral equivariant baseline model is a sequence-to-sequence
model based on [29]. We made several modifications to match the hyperparameters in [5], i.e., we
used StackedRNN [33] with 2 layers and added dropout layers. Additionally, we utilize teacher
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Figure 3: Illustration of pose regression tasks: (a) 2D to 3D pose estimation; (b) 2D pose forecasting; and (c)
skeleton-based action recognition.
Approach Dir. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg
Pavlakos [35] (CVPR‘18) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2
Yang [52] (CVPR‘18) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Luvizon [28] (CVPR‘18) (⇧) 49.2 51.6 47.6 50.5 51.8 60.3 48.5 51.7 61.5 70.9 53.7 48.9 57.9 44.4 48.9 53.2
Hossain [17] (ECCV‘18)(†, ⇧) 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3
Lee [25] (ECCV‘18)(†, ⇧) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8
Pavllo [36] (CVPR‘19) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8
Pavllo [36] (CVPR‘19)(†) 45.9 47.5 44.3 46.4 50.0 56.9 45.6 44.6 58.8 66.8 47.9 44.7 49.7 33.1 34.0 47.7
Pavllo [36] (CVPR‘19)(†, ‡) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8
Ours, single-frame 47.4 49.9 47.4 51.1 53.8 61.2 48.3 45.9 60.4 67.1 52.0 48.6 54.6 40.1 43.0 51.4
Ours (†) 44.8 46.1 43.3 46.4 49.0 55.2 44.6 44.0 58.3 62.7 47.1 43.9 48.6 32.7 33.3 46.7
Table 1: Results on the Human3.6M dataset: reconstruction error using Protocol 1 (MPJPE) in mm. The best
result is boldface and the second best is underlined. † indicates temporal models, ⇧ uses ground-truth bounding
box, and ‡ indicates test-time augmentation.

randomness. Importantly, during test no data-augmentation is performed and a single forward pass is
sufficient to obtain an ‘averaged’ result.

4 Experiments

We evaluate our approach on a variety of tasks, including 2D to 3D pose estimation, 2D pose
forecasting, and skeleton based action recognition. For each task, we describe the dataset, metric, and
implementation before discussing the results.

4.1 2D to 3D pose estimation

Task. 3D human pose estimation can be decoupled into the tasks of 2D keypoint detection and 2D to
3D pose estimation. We focus on the latter task, i.e., given a sequence of 2D keypoints, the task is to
estimate the corresponding 3D human pose. See Fig. 3 (a) for an illustration.

Dataset and metric. We evaluate on two standard datasets, the Human3.6M [19] and the HumanEva-
I [43]. Human3.6M is a large scale dataset of human motion with 3.6 million video frames. The dataset
consists of 11 subjects performing 15 different actions. Following prior work [34, 46, 30, 45, 28, 36],
each human pose is represented by a 17-joint skeleton. We use the same train and test subject splits.
HumanEva-I is a smaller dataset consisting of four subjects and six actions. To be consistent with
prior work [35, 25, 36], we use the same train and test splits evaluated over the actions of (walk, jog,
and box). For both of these datasets, we consider the setting where we train one model for all actions.

We report the two standard metrics used in prior work: Protocol 1 (MPJPE) which is the mean per-
joint position error between the prediction and ground-truth [30, 34, 36] and Protocol 2 (P-MPJPE)
which is the error, after alignment, between the prediction and ground-truth [30, 45, 17, 36].

Implementation details. Our model follows the supervised training procedure and network design
of Pavllo et al. [36]. Our network is the identical temporal convolutional network architecture,
where each layer is replaced with its chiral version, i.e., 1D dilated convolution, batch-normalization,
and dropout layers. We also replace ReLU non-linearities with Tanh to achieve equivariance. No
additional architecture changes were made. For Human3.6M, we use 2D keypoints extracted from
CPN [4] with Mask R-CNN [15] bounding boxes released by Pavllo et al. [36]. For HumanEva-I, we
use the 2D keypoint detections from Mask R-CNN released by Pavllo et al. [36].

Results. In Tab. 1, we report the performance on the Human3.6M data using Protocol 1 (MPJPE).
Our approach outperforms the state-of-the-art [36] which uses test-time augmentation by 0.1 mm in
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Forecasting Benefits of Chirality Nets

Walk Jog Box Avg.
App. S1 S2 S3 S1 S2 S3 S1 S2 S3 -
Pavlakos [34] 22.3 19.5 29.7 28.9 21.9 23.8 – – – –
Pavlakos [35] 18.8 12.7 29.2 23.5 15.4 14.5 – – – –
Lee [25] 18.6 19.9 30.5 25.7 16.8 17.7 42.8 48.1 53.4 –
Pavllo [36] 14.1 10.4 46.8 21.1 13.3 14.0 23.8 34.5 32.3 31.1
Pavllo [36] (‡) 13.9 10.2 46.6 20.9 13.1 13.8 23.8 33.7 32.0 30.8
Ours 15.2 10.3 47.0 21.8 13.1 13.7 22.8 31.8 31.0 30.6

Table 2: Results on HumanEva-I for multi-action (MA) mod-
els reported in Protocol 2 (P-MPJPE), lower the better. ‡
indicates test time augmentation.
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Figure 4: Comparisons between our approach
and [36] in limited data settings evaluated using
Protocol 1 on Human3.6M.

Prediction Steps Avg.
Approach 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 -
Residual [29] (CVPR‘17) 82.4 68.3 58.5 50.9 44.7 40.0 36.4 33.4 31.3 29.5 28.3 27.3 26.4 25.7 25.0 24.5 39.5
3D-PFNet [3](CVPR‘17) 79.2 60.0 49.0 43.9 41.5 40.3 39.8 39.7 40.1 40.5 41.1 41.6 42.3 42.9 43.2 43.3 45.5
TP-RNN [5] (WACV‘19) 84.5 72.0 64.8 60.3 57.2 55.0 53.4 52.1 50.9 50.0 49.3 48.7 48.3 47.9 47.6 47.3 55.6
Baseline w/o aug. 87.3 75.7 68.5 64.0 61.0 59.1 57.6 56.3 55.4 54.9 54.5 54.5 54.4 54.5 54.6 54.7 60.4
Baseline w/ aug. 86.9 75.2 67.9 63.5 60.4 58.4 57.0 55.8 55.1 54.5 54.1 54.0 53.9 53.9 54.0 54.0 59.9
Baseline w/ aug.(‡) 87.0 75.5 68.4 64.1 61.0 59.1 57.5 56.3 55.5 55.0 54.7 54.7 54.6 54.7 54.7 54.7 60.5
Ours 87.5 77.0 68.7 64.2 61.2 59.2 57.6 56.5 55.7 55.1 54.7 54.6 54.4 54.5 54.5 54.5 60.6

Table 3: Results on Penn action dataset, performance reported in terms of PCK@0.05 (higher the better). (‡)
indicates using test time augmentation.

Results. In Tab. 1, we report the performance on the Human3.6M data using Protocol 1 (MPJPE).
Our approach outperforms the state-of-the-art [36] which uses test-time augmentation by 0.1 mm in
overall average and achieves the best results in eight out of fifteen sub-categories. We note that, test-
time augmentation employed by Pavllo et al. [36] involves running the network twice for each input.
In contrast, our approach only requires a single forward pass. When comparing without test-time
augmentation, our approach outperforms by 1 mm. Additionally, for the single-frame models, we
observe a more significant reduction in error of 0.4 mm over [36] with test time augmentation. Next,
on HumanEva-I dataset, we also observed an increase in performance using Protocol 1. On average,
our approach achieves a 32.2mm error. This is a 0.8mm decrease over the current state-of-the-art of
33.0mm [36] and a 1.1mm decrease over [36] without test-time augmentation of 33.3mm.

We also performed evaluation using Protocol 2 (P-MPJPE). On Human3.6M we observe that our
approach performs worse than Pavllo et al. [36] by 0.3mm. We note that the loss function is chosen
to optimize Protocol 1, therefore our models are performing better at what they are optimized for. In
Tab. 2, we report the performance on HumanEva-I using Protocol 2 (P-MPJPE). Our model achieves
a 0.2 mm reduction in error over Pavllo et al. [36] on average. Most of the gain is obtained for the
boxing action, possibly due to the symmetric nature of the movement.

Limited data settings. A benefit of fewer model parameters is the potential to obtain better models
with less data. To confirm this, we perform experiments by varying the amount of training data,
starting from 0.1% of subject 1 (S1) to using three subjects S1, S5, S6. The results with comparison
to [36] are shown in Fig. 4. We observe that our approach consistently out-performs [36] in this low
resource settings, except at S1 0.1%. For the reported numbers, we use a batch-size of 64, and all
other hyper-parameters are identical between the models. If we further decrease the batch-size to 32
for S1 0.1%, our approach improves to 100.4mm where [36] improves to 102.3mm.

4.2 2D pose forecasting

Task. 2D pose forecasting is the pose regression task of predicting the future human pose, represented
in 2D keypoints, given present and past human pose. See Fig. 3 (b) for an illustration.

Dataset and metric. We evaluate on the Penn Action dataset [55]. The dataset consists of 2236
videos with 15 actions. Each frame is annotated with 2D keypoints of 13 human joints. We use the
same train and test split as in [3, 5]. Following Chiu et al. [5] we consider initial velocity as being
part of the input and a single model is used for all actions. For a fair comparison with prior work,
we report the ‘Percentage of Correct Keypoint’ metric with a 0.05 threshold (PCK@0.05), which
assesses the accuracy of the predicted keypoints. A predicted keypoint is considered correct if it is
within a 0.05 radius of the ground-truth when considering normalized distance.
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Deep Net Training

Algorithm:
• Load a batch of samples
• Compute predictions for every sample
• Compare predictions to groundtruth
• Backpropagate error
• Update parameters



Distributed Deep Net Training

(a) Traditional parameter server approach (b) Our gradient-centric approach

Figure 1: Comparison between traditional parameter server and our gradient-centric approaches.

heavy training of deep nets is often based on custom implementations [7, 5, 27, 16] relying on the36

parameter server architecture [22, 12]. Importantly, in common to all the aforementioned parameter37

server techniques is the transfer of gradients to a parameter server which maintains and distributes38

the accumulated weights, either synchronously or asynchronously to the worker nodes.39

In this paper, we aim at reducing the communication overhead for training of deep nets. To this40

end, we argue that the transfer of gradients in one direction and parameters in the other direction is41

suboptimal for reducing the communication overhead, since lossy compression of parameters has a42

negative impact on the achieved accuracy. To address this issue, we first propose a new technique43

for distributed training of deep nets which is more amenable to compression of the transferred44

information. We then develop in a second step compression schemes that permit more effective45

distributed training of neural nets.46

We demonstrate the efficacy of our proposed approach on a variety of benchmark datasets from47

MNIST [21] and CIFAR10 [17] to CIFAR100 [17] and ImageNet [29]. We use a variety of neural48

net architectures and provide a detailed analysis of the computation and communication time.49

2 Related Work50

Li et al. [23, 24] proposed a parameter server framework for distributed training of deep nets and51

a few approaches to reduce the cost of communication among compute nodes. More specifically,52

they first explored the key-value store approach that exchanges nonzero parameter values, leveraging53

the sparsity of the parameter matrix. Secondly, they adopted a caching approach to reduce the54

number of key lists that need to be transmitted by caching repeatedly used key lists on both the55

sending and receiving compute nodes. Third, they deployed approaches that randomly or selectively56

skip some keys and/or values. Lastly, they relaxed data consistencies to overlap computation with57

communication for some consecutive iterations and thus hide the communication latency. Note that58

these approaches assume that (1) the parameters are indeed sparse and (2) the framework updates and59

maintains parameters using centralized servers. In contrast, our work is a gradient-centric framework60

that exchanges only gradient values among compute nodes to update each parameter, exploiting our61

observation that the gradient values are much more tolerant to more aggressive lossy compression62

than parameter values. Consequently, our framework efficiently supports dense parameters without63

notably compromising the accuracy of the training procedure.64

Abadi et al. [1, 2] proposed TensorFlow, a generic framework to implement and deploy machine65

learning models. TensorFlow can map dataflow-like models onto diverse hardware platforms, ranging66

from mobile platforms such as Android and iOS to conventional platforms such as multiple CPUs67

and GPUs. These heterogeneous computational platforms all collaborate to update a set of shared68

parameters stored in centralized servers. To distribute a computation graph, TensorFlow also supports69

various types of parallelism including model and data parallelism through replication and parallel70

execution of code, mainly following the parameter server framework.71

Dean et al. [6] proposed DistBelief which serves as the previous generation of TensorFlow. Im-72

portantly, they implemented asynchronous algorithms to improve communication efficiency and73

therefore train large models over clusters with thousands of compute nodes. As DistBelief also74
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Fig. 3: (a) The size of weights (or gradients). (b) The percentage
of the time spent to exchange g and w in total training time with a
conventional worker-aggregator approach.

(w(t+1)) to worker nodes. The hierarchical reduction tree of
aggregator nodes not only effectively disperses the networking
and aggregation workload to distributed nodes, but also
significantly reduces the size of system-wide data exchange by
performing the intermediate aggregations. However, even with
the hierarchical approach, each aggregator node should com-
municate with a group of worker nodes and aggregate the local
gradients, which becomes the communication and computation
bottleneck. Fig. 3 reports the exchanged weight/gradient size
and the fraction of communication time when training state-of-
the-art DNN models on a five-node cluster with 10Gb Ethernet
connections. For instance, per each iteration, AlexNet requires
233 MB of data exchange for each of gradients and weights.
Due to the large size of data exchange, 75% of training time for
AlexNet goes to the communication. Some recent DNNs (e.g.
ResNet-50: 98 MB) that have smaller sizes than AlexNet are
also included in our evaluations (Sec. VIII). Nonetheless, as the
complexity of tasks moves past simple object recognition, the
DNNs are expected to grow in size and complexity [20]. The
communication/computation ratio becomes even larger as the
specialized accelerators deliver higher performance and reduces
the computation time and/or more nodes are used for training.

III. GRADIENTS FOR COMPRESSION

To reduce the communication overhead, INCEPTIONN aims
to develop a compression accelerator in NICs. Utilizing
conventional compression algorithms for acceleration is
suboptimal since the complexity of algorithms will impose
significant hardware cost and latency overhead. Thus, in
designing the compression algorithm, we leverage the
following algorithmic properties: (1) the gradients have
significantly larger amenity to aggressive compression
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Fig. 4: Impact of floating-point truncation of weight w only, gradient
g only, and both w and g on training accuracy of AlexNet and
Handwritten Digit Classification (HDC). Floating-point truncation
drops the LSB mantissa or even exponent bits of the 32-bit IEEE FP
format. xb-T represents truncation of x LSBs.

compared to weights, and (2) the gradients mostly fall in the
range between -1.0 and 1.0 and the distribution peaks tightly
around zero with low variance. These characteristics motivate
the design of our lossy compression for gradients.

A. Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training
are normally 32-bit floating-point values, whereas they are 16
or 32-bit fixed-point values in the inference phase [21, 22]. It
is widely known that floating-point values are not very much
compressible with lossless compression algorithms [23]. For
instance, using Google’s state-of-the-art lossless compression
algorithm, Snappy, not only offers a poor compression ratio
of ⇠1.5, but also increases the overall time spent for the
training phase by a factor of 2 due to the computing overhead
of compression. Thus, we employ a more aggressive lossy
compression, exploiting tolerance of DNN training to imprecise
values at the algorithm level. While lossy compression provides
higher compression ratios and thus larger performance benefits
than lossless compression, it will affect the prediction (or
inference) accuracy of trained DNNs. To further investigate this,
we perform an experiment using a simple lossy compression
technique: truncating some Least Significant Bits (LSBs) of
the g and w values. Fig. 4 shows the effect of the lossy
compression on the prediction accuracy of both trained AlexNet
and an handwritten digit classification (HDC) net. This result
shows that the truncation of g affects the predictor accuracy
significantly less than that of w, and the aggressive truncation of
w detrimentally affects the accuracy for complex DNNs such as
AlexNet. This phenomenon seems intuitive since the precision
loss of w is accumulated over iterations while that of g is not.
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(w(t+1)) to worker nodes. The hierarchical reduction tree of
aggregator nodes not only effectively disperses the networking
and aggregation workload to distributed nodes, but also
significantly reduces the size of system-wide data exchange by
performing the intermediate aggregations. However, even with
the hierarchical approach, each aggregator node should com-
municate with a group of worker nodes and aggregate the local
gradients, which becomes the communication and computation
bottleneck. Fig. 3 reports the exchanged weight/gradient size
and the fraction of communication time when training state-of-
the-art DNN models on a five-node cluster with 10Gb Ethernet
connections. For instance, per each iteration, AlexNet requires
233 MB of data exchange for each of gradients and weights.
Due to the large size of data exchange, 75% of training time for
AlexNet goes to the communication. Some recent DNNs (e.g.
ResNet-50: 98 MB) that have smaller sizes than AlexNet are
also included in our evaluations (Sec. VIII). Nonetheless, as the
complexity of tasks moves past simple object recognition, the
DNNs are expected to grow in size and complexity [20]. The
communication/computation ratio becomes even larger as the
specialized accelerators deliver higher performance and reduces
the computation time and/or more nodes are used for training.

III. GRADIENTS FOR COMPRESSION

To reduce the communication overhead, INCEPTIONN aims
to develop a compression accelerator in NICs. Utilizing
conventional compression algorithms for acceleration is
suboptimal since the complexity of algorithms will impose
significant hardware cost and latency overhead. Thus, in
designing the compression algorithm, we leverage the
following algorithmic properties: (1) the gradients have
significantly larger amenity to aggressive compression
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compared to weights, and (2) the gradients mostly fall in the
range between -1.0 and 1.0 and the distribution peaks tightly
around zero with low variance. These characteristics motivate
the design of our lossy compression for gradients.

A. Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training
are normally 32-bit floating-point values, whereas they are 16
or 32-bit fixed-point values in the inference phase [21, 22]. It
is widely known that floating-point values are not very much
compressible with lossless compression algorithms [23]. For
instance, using Google’s state-of-the-art lossless compression
algorithm, Snappy, not only offers a poor compression ratio
of ⇠1.5, but also increases the overall time spent for the
training phase by a factor of 2 due to the computing overhead
of compression. Thus, we employ a more aggressive lossy
compression, exploiting tolerance of DNN training to imprecise
values at the algorithm level. While lossy compression provides
higher compression ratios and thus larger performance benefits
than lossless compression, it will affect the prediction (or
inference) accuracy of trained DNNs. To further investigate this,
we perform an experiment using a simple lossy compression
technique: truncating some Least Significant Bits (LSBs) of
the g and w values. Fig. 4 shows the effect of the lossy
compression on the prediction accuracy of both trained AlexNet
and an handwritten digit classification (HDC) net. This result
shows that the truncation of g affects the predictor accuracy
significantly less than that of w, and the aggressive truncation of
w detrimentally affects the accuracy for complex DNNs such as
AlexNet. This phenomenon seems intuitive since the precision
loss of w is accumulated over iterations while that of g is not.
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Idea

(a) Traditional parameter server approach (b) Our gradient-centric approach

Figure 1: Comparison between traditional parameter server and our gradient-centric approaches.

heavy training of deep nets is often based on custom implementations [7, 5, 27, 16] relying on the36

parameter server architecture [22, 12]. Importantly, in common to all the aforementioned parameter37

server techniques is the transfer of gradients to a parameter server which maintains and distributes38

the accumulated weights, either synchronously or asynchronously to the worker nodes.39

In this paper, we aim at reducing the communication overhead for training of deep nets. To this40

end, we argue that the transfer of gradients in one direction and parameters in the other direction is41

suboptimal for reducing the communication overhead, since lossy compression of parameters has a42

negative impact on the achieved accuracy. To address this issue, we first propose a new technique43

for distributed training of deep nets which is more amenable to compression of the transferred44

information. We then develop in a second step compression schemes that permit more effective45

distributed training of neural nets.46

We demonstrate the efficacy of our proposed approach on a variety of benchmark datasets from47

MNIST [21] and CIFAR10 [17] to CIFAR100 [17] and ImageNet [29]. We use a variety of neural48

net architectures and provide a detailed analysis of the computation and communication time.49

2 Related Work50

Li et al. [23, 24] proposed a parameter server framework for distributed training of deep nets and51

a few approaches to reduce the cost of communication among compute nodes. More specifically,52

they first explored the key-value store approach that exchanges nonzero parameter values, leveraging53

the sparsity of the parameter matrix. Secondly, they adopted a caching approach to reduce the54

number of key lists that need to be transmitted by caching repeatedly used key lists on both the55

sending and receiving compute nodes. Third, they deployed approaches that randomly or selectively56

skip some keys and/or values. Lastly, they relaxed data consistencies to overlap computation with57

communication for some consecutive iterations and thus hide the communication latency. Note that58

these approaches assume that (1) the parameters are indeed sparse and (2) the framework updates and59

maintains parameters using centralized servers. In contrast, our work is a gradient-centric framework60

that exchanges only gradient values among compute nodes to update each parameter, exploiting our61

observation that the gradient values are much more tolerant to more aggressive lossy compression62

than parameter values. Consequently, our framework efficiently supports dense parameters without63

notably compromising the accuracy of the training procedure.64

Abadi et al. [1, 2] proposed TensorFlow, a generic framework to implement and deploy machine65

learning models. TensorFlow can map dataflow-like models onto diverse hardware platforms, ranging66

from mobile platforms such as Android and iOS to conventional platforms such as multiple CPUs67

and GPUs. These heterogeneous computational platforms all collaborate to update a set of shared68

parameters stored in centralized servers. To distribute a computation graph, TensorFlow also supports69

various types of parallelism including model and data parallelism through replication and parallel70

execution of code, mainly following the parameter server framework.71

Dean et al. [6] proposed DistBelief which serves as the previous generation of TensorFlow. Im-72

portantly, they implemented asynchronous algorithms to improve communication efficiency and73

therefore train large models over clusters with thousands of compute nodes. As DistBelief also74
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Fig. 6: INCEPTIONN gradient-centric distributed training algorithm in a worker group.

B. Tightness of Dynamic Range in Gradients

In designing the lossy compression algorithm, we leverage
the inherent numerical characteristics of gradient values, i.e.,
the values mostly fall in the range between -1.0 and 1.0 and
the distribution peaks tightly around zero with low variance.
We demonstrate the properties, analyzing the distribution
of gradients at three different phases during the training of
AlexNet. As plotted in Fig. 5, all the gradient values are
between -1 and 1 throughout the three training phases and
most values are close to 0. We also find a similar distribution
for other DNN models. Given this observation, we focus on the
compression of floating-point values in the range between -1.0
and 1.0 such that the algorithm minimizes the precision loss.

Our lossy compression algorithm (Section V) is built upon
these two properties of gradients, and exclusively aims to deal
with gradients. However, the gradients are only communicated
in one direction in the conventional distributed training
while the updated weights are passed around in the other
direction. Therefore, before delving into the details of our
compression technique and its hardware, we first discuss
our training algorithm that communicates gradients in all the
directions. Hence, this algorithm can maximize the benefits
of INCEPTIONN’s in-network acceleration of gradients.

IV. GRADIENT-CENTRIC DISTRIBUTED TRAINING

Fig. 6(a) depicts the worker group organization of the
INCEPTIONN training algorithm. In this algorithm, there is no
designated aggregator node in the worker group. Instead, each
worker node maintains its own model w (i.e., model replica),
and only exchanges and aggregates a subset of gradients g
with two neighboring nodes after each iteration. Fig. 6(b)
illustrates step-by-step the procedure of the algorithm using
an example. At the beginning, every worker node starts
with the same w0 and INCEPTIONN evenly partitions gradient
vectors into four blocks, blk[0], blk[1], blk[2], and blk[3] for
four worker nodes. Every training iteration, each node loads
and computes a mini-batch of data based on the current w
and then generates a local g to be exchanged. Subsequently,
INCEPTIONN exchanges and aggregates g in two phases.

On node[i] in a N-node cluster

1: Initialize by the same model weights w0, learning rate h
2: for iteration t=0,...,(T�1) do
3: Load a mini-batch B of training data
4: Forward pass to compute current loss `B
5: Backward pass to compute local gradient gi ∂`B

∂w
6: (Compress local gradient gi Compress(gi))
7: // Gradient Exchange Begin
8: Partition gi evenly into N blocks
9: for step s=1,...,N�1 do

10: Receive a block rb from node[(i�1)%N],
11: then blklocal[(i�s)%N] rb

L
blklocal[(i�s)%N]

12: Send blklocal[(i�s+1)%N] to node[(i+1)%N]
13: end for
14: for step s=N,...,2N�2 do
15: Receive a block rb from node[(i�1)%N],
16: then blklocal[(i�s+1)%N] rb
17: Send blklocal[(i�s+2)%N] to node[(i+1)%N]
18: end for
19: // Gradient Exchange End
20: (Decompress aggregated gradient gi Decompress(gi))
21: Update w w�h ·gi
22: end for

Algorithm 1: INCEPTIONN gradient-centric distributed training
algorithm for each worker node.

(P1) aggregation of gradients. worker[0] sends blk[0] to
its next node, worker[1]. As soon as the blk[0] is received,
worker[1] performs a sum-reduction on the received blk[0]
and its own blk[0] (of worker[1]). This concurrently happens
across all four workers (“Step 1”). This step is repeated two
more times (“Step 2” – “Step 3”) until worker[0], worker[1],
worker[2], and worker[3] have fully aggregated blk[1], blk[2],
blk[3], and blk[0] from all other 3 workers, respectively.

(P2) propagation of the aggregated gradients. worker[3]
sends blk[0] to worker[0]. Now, worker[0] has blk[0] and blk[1].
This concurrently happens across all four workers and every
worker has two fully aggregated blocks (“Step 4”). This step
is repeated two more times (“Step 5” – “Step 6”) until every
worker has g which is fully aggregated from all four workers.
Algorithm 1 formally describes the INCEPTIONN training
algorithm to generalize it for an arbitrary number of workers,
where the

L
denotes sum-reduction.

In summary, the INCEPTIONN training algorithm utilizes the
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Standard Compression

Input : f : 32-bit single-precision FP value
Output :v: Compressed bit vector (32, 16, 8, or 0 bits)

t: 2-bit tag indicating the compression mechanism
s f [31] // sign
e f [30:23] // exponent
m f [22:0] // mantissa
if (e�127) then

v f [31:0]
t NO COMPRESS // 2’b11

else if (e<error bound) then
v {}
t 0BIT COMPRESS // 2’b00

else if (error bounde<127) then
n shi f t 127�e
shi f ted m concat(1’b1, m)>>n shi f t
if (e�error bound+d(127�error bound)/2e) then

v concat(s, shi f ted m[22:8])
t 16BIT COMPRESS // 2’b10

else
v concat(s, shi f ted m[22:16])
t 8BIT COMPRESS // 2’b01

end
end

Algorithm 2: Lossy compression algorithm for single-precision
floating-point gradients.

network bandwidth of every worker evenly unlike the worker-
aggregator approach, creating the communication bottleneck.
Furthermore, the algorithm performs the computation for
aggregating gradients across workers in a decentralized
manner, avoiding the computation bottleneck at a particular
node. Lastly, the INCEPTIONN algorithm can be efficiently
implemented with popular distributed computing algorithms
such as Ring AllReduce [24].

V. COMPRESSING GRADIENTS

Compression. Algorithm 2 elaborates the procedure of com-
pressing a 32-bit floating-point gradient value ( f ) into a com-
pressed bit vector (v) and a 2-bit tag indicating the used com-
pression mechanism (t). Note that this algorithm is described
based on the standard IEEE 754 floating-point representation
which splits a 32-bit value into 1 sign bit (s), 8 exponent bits (e),
and 23 mantissa bits (m). Depending on the range where f falls
in, the algorithm chooses one of the four different compression
mechanisms. If f is larger than 1.0 (i.e., e�127), we do not
compress it and keep the original 32 bits (NO COMPRESS). If
f is smaller than an error bound, we do not keep any bits from f
(0BIT COMPRESS). When the gradient values are in the range
(error bound < f < 1.0), we should take a less aggressive
approach since we need to preserve the precision. The simplest
approach would be to truncate some LSB bits from the mantissa.
However, this approach not only limits the maximum obtainable
compression ratio since we need to keep at least 9 MSB
bits for sign and exponent bits, but also affects the precision
significantly as the number of truncated mantissa bits increases.
Instead, our approach is to always set e to 127 and to not include
the exponent bits in the compressed bit vector. Normalizing
e to 127 is essentially multiplying 2(127�e) to the input value;
therefore, we need to remember the multiplicand so that it can
be decompressed. To encode this information, we concatenate a
1-bit ‘1’ at the MSB of m and shift it to the right by 127�e bits.
Then we truncate some LSB bits from the shifted bit vector
and keep either 8 or 16 MSB bits depending on the range of

Input :v: Compressed bit vector (32, 16, 8, or 0 bits)
t: 2-bit tag indicating the compression mechanism

Output : f : 32-bit single-precision FP value
if (t=NO COMPRESS) then

f v[31:0]
else if (t=0BIT COMPRESS) then

f 32’b0
else

if (t=8BIT COMPRESS) then
s v[7]
n shi f t f irst1 loc f rom MSB (v[6:0])

m concat(v[6:0]<<n shi f t, 16’b0)
else if (t=16BIT COMPRESS) then

s v[15]
n shi f t f irst1 loc f rom MSB (v[14:0])

m concat(v[14:0]<<n shi f t, 8’b0)
end
e 127�n shi f t
f concat(s, e, m)

end
Algorithm 3: Decompression algorithm.

value. Consequently, the compression algorithm produces a
compressed bit vector with the size of either 32, 16, 8, or 0
and 2-bit tag indicating the used compression mechanism.
Decompression. Algorithm 3 describes the decompression
algorithm that takes a compressed bit vector v and a 2-bit
tag t. When t is NO COMPRESS or 0BIT COMPRESS, the
decompressed output is simply 32-bit v or zero, respectively. If
t is 8BIT COMPRESS or 16BIT COMPRESS, we should recon-
struct the 32-bit IEEE 754 floating-point value from v. First, we
obtain the sign bit s by taking the first bit of v. Then we find the
distance from MSB to the first “1” in v, which is the multipli-
cand used for setting the exponent to 127 during compression.
Once we get the distance, e can be calculated by subtracting
the distance from 127. The next step is to obtain m by shifting
v to left by the distance and padding LSBs with zeros to fill
the truncated bits during compression. Since we now have s, e,
and m, we can concatenate them together as a 32-bit IEEE 754
floating-point value and return it as the decompression output.

VI.
IN-NETWORK ACCELERATION OF GRADIENT COMPRESSION

After applying compression algorithm in Section V, we may
significantly reduce the amount of data exchanged among nodes
in INCEPTIONN, but our final goal is to reduce the total training
time. In fact, although researchers in the machine learning
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(w(t+1)) to worker nodes. The hierarchical reduction tree of
aggregator nodes not only effectively disperses the networking
and aggregation workload to distributed nodes, but also
significantly reduces the size of system-wide data exchange by
performing the intermediate aggregations. However, even with
the hierarchical approach, each aggregator node should com-
municate with a group of worker nodes and aggregate the local
gradients, which becomes the communication and computation
bottleneck. Fig. 3 reports the exchanged weight/gradient size
and the fraction of communication time when training state-of-
the-art DNN models on a five-node cluster with 10Gb Ethernet
connections. For instance, per each iteration, AlexNet requires
233 MB of data exchange for each of gradients and weights.
Due to the large size of data exchange, 75% of training time for
AlexNet goes to the communication. Some recent DNNs (e.g.
ResNet-50: 98 MB) that have smaller sizes than AlexNet are
also included in our evaluations (Sec. VIII). Nonetheless, as the
complexity of tasks moves past simple object recognition, the
DNNs are expected to grow in size and complexity [20]. The
communication/computation ratio becomes even larger as the
specialized accelerators deliver higher performance and reduces
the computation time and/or more nodes are used for training.

III. GRADIENTS FOR COMPRESSION

To reduce the communication overhead, INCEPTIONN aims
to develop a compression accelerator in NICs. Utilizing
conventional compression algorithms for acceleration is
suboptimal since the complexity of algorithms will impose
significant hardware cost and latency overhead. Thus, in
designing the compression algorithm, we leverage the
following algorithmic properties: (1) the gradients have
significantly larger amenity to aggressive compression
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compared to weights, and (2) the gradients mostly fall in the
range between -1.0 and 1.0 and the distribution peaks tightly
around zero with low variance. These characteristics motivate
the design of our lossy compression for gradients.

A. Robustness of Training to Loss in Gradients

Both weights (w) and gradients (g) in distributed training
are normally 32-bit floating-point values, whereas they are 16
or 32-bit fixed-point values in the inference phase [21, 22]. It
is widely known that floating-point values are not very much
compressible with lossless compression algorithms [23]. For
instance, using Google’s state-of-the-art lossless compression
algorithm, Snappy, not only offers a poor compression ratio
of ⇠1.5, but also increases the overall time spent for the
training phase by a factor of 2 due to the computing overhead
of compression. Thus, we employ a more aggressive lossy
compression, exploiting tolerance of DNN training to imprecise
values at the algorithm level. While lossy compression provides
higher compression ratios and thus larger performance benefits
than lossless compression, it will affect the prediction (or
inference) accuracy of trained DNNs. To further investigate this,
we perform an experiment using a simple lossy compression
technique: truncating some Least Significant Bits (LSBs) of
the g and w values. Fig. 4 shows the effect of the lossy
compression on the prediction accuracy of both trained AlexNet
and an handwritten digit classification (HDC) net. This result
shows that the truncation of g affects the predictor accuracy
significantly less than that of w, and the aggressive truncation of
w detrimentally affects the accuracy for complex DNNs such as
AlexNet. This phenomenon seems intuitive since the precision
loss of w is accumulated over iterations while that of g is not.
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community have proposed other compression algorithms [25–
29], most of them did not report the total training wall-clock
time after evaluating only the compression ratio and the
impact of compression on training accuracy. Directly running
these compression algorithms in software, though reducing
the communication time, can place heavy burden on the
computation resources and thus seriously increase computation
time. Specifically, such compression algorithms need to run on
the CPUs as GPUs cannot offer efficient bit manipulation (e.g.,
packing some bits from floating-point numbers) compared to
CPUs. Prior work [30] shows GPUs offer only ⇠50% higher
throughput at lower compression ratios than Snappy [31].

Fig. 7 shows that the training time increases by a factor
of 2⇠4⇥ even when using the fastest lossless (Snappy) and
lossy (SZ [32]) compression algorithms. Even a simple lossy
truncation operation significantly increases the computation
time, because simply packing/unpacking a large number of g
values also significantly burdens the CPUs. This in turn consid-
erably negates the benefit of reduced communication time as
shown in Fig. 7, only slightly decreasing the total training time.
Therefore, to reduce both communication and computation
times, we need hardware-based compression for INCEPTIONN.

A. Accelerator Architecture and Integration with NIC

NIC architecture. To evaluate our system in a real world
setting, we implement our accelerators on a Xilinx VC709
evaluation board [33] that offers 10Gbps network connectivity
along with programmable logic. We insert the accelerators
within the NIC reference design [34] that comes with the
board. Fig. 8 illustrates this integration of the compression and
decompression engines. For output traffic, as in the reference
design, the packet DMA collects the network data from the host
system through the PCIe link. These packets then go through
the Compression Engine that stores the resulting compressed
data in the virtual FIFOs that are used by the 10G Ethernet
MACs. These MACs drive the Ethernet PHYs on the board and
send or receive the data over the network. For input traffic, the
Ethernet MACs store the received data from the PHYs in the
virtual FIFOs. Once a complete packet is stored in the FIFOs,
the Decompression Engine starts processing and passing it to
the packet DMA for transfer to the CPU. Both engines use the
standard 256-bit AXI-stream bus to interact with other modules.

Although hardware acceleration of the compression and
decompression algorithms is straightforward, their integration
within the NIC poses several challenges. These algorithms are
devised to process streams of floating-point numbers, while

the NIC deals with TCP/IP packets. Hence, the accelerators
need to be customized to transparently process TCP/IP
packets. Furthermore, the compression is lossy, the NIC
needs to provide the abstraction that enables the software to
activate/deactivate the lossy compression per packet basis. The
following discusses the hardware integration and Section VI-B
elaborates on the software abstraction.

Compression Engine. Not to interfere with the regular packets
that should not be compressed, the Compression Engine
first needs to identify which packets are intended for lossy
compression. Then, it needs to extract their payload, compress
it, and then reattach it to the packet. The Compression Engine
processes packets in bursts of 256 bits, which is the number
of bits an AXI interface can deliver in one cycle. Our engines
process the packet in this burst granularity to avoid curtailing
the processing bandwidth of the NIC. Our software API marks
a packet compressible by setting the Type of Service (ToS)
field [35] in the header to a special value. Since the ToS field
is always loaded in the first burst, the Compression Engine
performs the sequence matching at the first burst and identifies
the compressible packets. If the ToS value does not match,
compression is bypassed. The Compression Engine also does
not compress the header and the compression starts as soon
as the first burst of the payload arrives.

Fig. 9 depicts the architecture of the compression hardware.
The payload burst feeds into the Compression Unit equipped
with eight Compression Blocks (CBs), each of which performs
the compression described in Algorithm 2. Each CB produces
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workers for INCx and one more aggregator for WAx. Note that these
measurements are based on the same number of training iterations.

breakdown between computation and communication. This
result shows that even in a small cluster without compression,
the INCEPTIONN’s training algorithm offers 52%, 38%, 49%,
and 31% shorter total training time than the worker-aggregator
based algorithm for AlexNet, HDC, ResNet-50 and VGG-16,
respectively. This is due to 55%, 39%, 58%, and 36% reduction
in communication time in comparison with the reference design.

Intuitively, INCEPTIONN is much more communication-
efficient, because it not only removes the bottleneck link, but
also enables concurrent utilization of all the links among nodes.
Besides, this balanced gradient exchange also contributes to
the reduction of computation time as the gradient summation
is done by all the nodes in a distributed manner, whereas the
worker-aggregator based algorithm burdens the designated
aggregator nodes to perform the aggregation of the gradients
collected from a group of subnodes.

Furthermore, Fig. 12 compares the training time of the
reference design and INCEPTIONN system, when both are
equipped with our gradient compression (WA+C, INC+C).
From the result, we see that the conventional worker-aggregator
based approach can still benefit from our compression with
a ⇠30.8% reduction in communication time compared to its
baseline (WA), although only one direction of communication
is applicable for compression. On the other hand, our gradient-
centric INCEPTIONN algorithm offers maximized compression
opportunities such that INCEPTIONN with hardware compression
(INC+C) gives ⇠80.7% and ⇠53.9% lower communication
time than the conventional worker-aggregator baseline (WA)
and INCEPTIONN baseline (INC), respectively. Therefore, the
full INCEPTIONN system (INC+C) demonstrates a training time
speedup of 2.2⇠3.1⇥ over the conventional approach (WA)
for the four models trained over the same number of epochs.

B. Effect of INCEPTIONN Compression on Final Accuracy

The accuracy loss in gradients due to lossy compression
may affect the final accuracy and/or prolong the training
because of the necessity to run more epochs to converge to the

WA INC+C WA INC+C WA INC+C WA INC+C
Training Time 175h 56h 170s 64s 378h 127h 847h 384h

# of Epochs 64 65 17 18 90 92 74 75
Final Accuracy 57.2% 57.2% 98.5% 98.5% 75.3% 75.3% 71.5% 71.5%
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Fig. 13: Speedup of INCEPTIONN over the conventional approach
when both achieve the same level of accuracy. We use the same
notations with Fig. 12.

lossless baseline accuracy. To understand the effect of our lossy
compression on accuracy (and on prolonged training), we take
the conventional worker-aggregator system (WA) and the INCEP-
TIONN system (INC+C), and train the models until both systems
converge to the same level of accuracy. Fig. 13 presents the total
number of epochs and the final speedup of INCEPTIONN system
over the conventional training system to achieve the same level
of accuracy. From this, we observe that only a modest number
of more epochs (1 or 2) are required to reach the final accuracy
and thus INCEPTIONN system still offers a speedup of 2.2⇥
(VGG-16) to 3.1⇥ (AlexNet) over the convention approach,
which matches the performance in Sec. VIII-A. Furthermore,
we find that the extra number of training epochs is small but es-
sential, without which an accuracy drop of ⇠1.5% might incur.

C. Evaluation of INCEPTIONN Compression Algorithm

Fig. 14 compares the compression ratios among various lossy
compression schemes, and the impact of these compressions
on relative prediction accuracy of DNNs which are trained
through our training algorithm for the same number of epochs.
Specifically, we evaluate truncation of 16, 22, and 24 LSBs
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Fig. 14: Comparison of (a) compression ratio and (b) impacts on
prediction accuracy of DNNs trained by INCEPTIONN training
algorithm with various lossy compression schemes. Note that the
accuracy is based on the same epochs of training (without extra
epochs) for each model. (“Base” denotes the baseline without
compression. The number on top of each “Base” bar denotes the
absolute prediction accuracy. xb-T represents truncation of x LSBs.
“INC” bars are the results of INCEPTIONN lossy compression with
a given error bound.)
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Pipelining is feasible
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Figure 1: Comparison between different distributed learning frameworks: (a) parameter server with
asynchronous training, (b) decentralized synchronous training, and (c) decentralized pipeline training.

Compression in Distributed Training: As the model size increases and cluster size scales, commu-
nication overhead in distributed learning system dominates the training time, e.g., up to 80 ⇠ 90%
even in a high-speed network environment [29, 10]. To reduce the communication time, various com-
pression algorithms have been proposed recently [43, 46, 11, 4, 50, 33, 2], some of which focus on
reducing the precision of communicated gradients through scalar quantization into 1 bit, while others
focus on reducing the quantity of gradients to be transferred. Most compression works, however,
only emphasize on achieving high compression ratio or low loss in accuracy without reporting the
wall-clock training time.

In practice, compression without knowledge of the communication process is usually counter-
productive [29], i.e., the total training time often increases. This is due to the fact that AllReduce
is a multi-step algorithm which requires transferred gradients to be compressed and decompressed
repeatedly with a worst-case complexity linear in the cluster size, as we discuss below in Sec. 3.2.

3 Decentralized Pipelined Stochastic Gradient Descent

Overview: To address the aforementioned issues (network congestion for a central server, long
execution time for synchronous training, and stale gradients in asynchronous training) we propose a
new decentralized learning framework, Pipe-SGD, shown in Fig. 1 (c). It balances communication
among nodes via AllReduce and pipelines the local training iterations to hide communication time.

We developed Pipe-SGD by analyzing a timing model for wall-clock train time under different
resource conditions using various communication approaches. We find that the proposed Pipe-SGD is
optimal when gradient updates are delayed by only one iteration and the time taken by each iteration
is dominated by local computation on workers. Moreover, we found lossy compression to further
reduce communication time without impacting accuracy.

Due to local pipelined training, balanced communication, and compression, the communication time
is no longer part of the critical path, i.e., it is completely masked by computation, leading to linear
speedup of end-to-end training time as the cluster size scales. Finally, we prove the convergence of
Pipe-SGD for convex and strongly convex objectives by adjusting the proof of [23, 15].

3.1 Timing Models and Decentralized Pipe-SGD

Timing Model: We propose timing models based on decentralized synchronous SGD to analyze the
wall-clock runtime of training. Each training iteration consists of three major stages: model update,
gradient computation, and gradient communication. Classical synchronous SGD (Fig. 1 (b)) runs
local iterations on workers sequentially, i.e., each update depends on the gradient from the previous
iteration, i.e., the iteration dependency is 1. Therefore the total runtime of synchronous SGD can be
formulated easily as:

ltotal_sync = T · (lup + lcomp + lcomm), (2)
where T denotes the total number of training iterations and lup, lcomp, lcomm refer to the time taken by
update, compute, and communication, respectively. It is apparent that synchronous SGD depends on
the sum of execution time taken by all stages, which leads to long end-to-end training time.
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Results
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